國立成功大學 110學年度碩士班招生考試試題

編 號: 243

系 所:工業與資訊管理學系

科 目: 生產與作業管理

日 期: 0203

節 次:第2節

備 註:可使用計算機

國立成功大學 110 學年度碩士班招生考試試題

編號: 243

系 所:工業與資訊管理學系 考試科目:生產與作業管理

考試日期:0203,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. Short description questions:
- (1) The current issues in business that impact operations management. (8%)
- (2) The role of the available-to-promise (ATP) for conducting the master scheduling process. (6%)
- (3) Why the use of either kanban or MRP does not preclude the use of the other? (6%)
- 2. Give a simple example to describe how to implement QFD and six sigma. (18%)
- 3. Give a simple example to explain how techniques described in the work design and measurement could be used to improve operations. (12%)

國立成功大學 110 學年度碩士班招生考試試題

編號: 243

系 所:工業與資訊管理學系

考試科目: 生產與作業管理

考試日期:0203, 節次:2

第2頁,共2頁

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
 - 4. (22%) A company makes a component at a rate 320 per day. The annual demand of this component is 72,000. We assume that the demand is uniformly over the entire year. Holding cost is \$4 per component a year, and setup cost for a production lot is \$40. The company operates 300 days a year.
 - (a) (7%) What is the optimal lot size?
 - (b) (4%) What is the cycle time under the optimal lot size
 - (c) (4%) What is the run time?
 - (d) (7%) What is the minimum total annual cost (carrying and setup)?
 - 5. (16%) A firm chooses a policy for improving manufacturing among four alternatives. However, the firm is uncertain about the future market and thus divides it into three possible situations. The payoff table is as follows:

Payoff Table

2 47 022 2 40010							
	Situation 1	Situation 2	Situation 3				
Policy 1	10	8	-6				
Policy 2	-3	6	9				
Policy 3	1	3	5				
Policy 4	9	-9	15				

Explain and determine which policy would be chosen under the following approach.

- (a) (4%) Optimistic approach
- (b) (4%) Maximin approach
- (c) (4%) Laplace approach
- (d) (4%) Minimax regret approach
- (12%) Determine the minimum number of workers needed, and a schedule for the following requirements, giving workers two consecutive days off per cycle (Sunday is not included).

					4//	
Workdays	Mon	Tue	Wed	Thu	Fri	Sat
Worker	6	2	3	3	4	5
needed						