國立成功大學75學年度工業管理考試(應用数學試題)第1頁

- 1. Find the derivative of $f(x)=x^{2} \cdot e^{x^{3}}$. (10%)
- 2. Find $\int_{0}^{1} x^{-0.2} (1-x)^{-0.4} dx$. (10%)
- 3. Show that $\sum_{i=0}^{n} (-1)^{i} {n \choose i} = 0$, where ${n \choose i} = \frac{n(n-1) \dots (n-i+1)}{i(i-1) \dots (1)}$. (10%)
- 4. Let A be an nxn orthogonal matrix, i.e., $A^{-1}=A'$. Please show that A is nonsingular, furthermore, its determinant is equal to either +1 or -1. (10%)
- 5. Show that (15%):

$$(i) \binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$$

(i)
$$\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$$

(ii) $\sum_{j=0}^{\infty} \binom{n+j-1}{j} x^j = (1-x)^{-n}$
(iii) $\sum_{j=0}^{\infty} (j+1) x^j = \frac{1}{(1-x)^2}$

(iii)
$$\sum_{j=0}^{\infty} (j+1)_x^j = \frac{1}{(1-x)^2}$$

- 6. Find the Laplace transform of $f(x)=(1-e^{-x})/x$. (Hint: The Laplace transform of a function f(x) is defined as $L(f(x)) = \int_{0}^{\infty} e^{-tx} f(x) dx$.) (15%)
- 7. An nxn matrix A is an idempotent matrix if it satisfies (i) A=A' and (ii) $A=A^2$. Now, if the rank of A is k, show that A has k nonzero characteristic roots and they are each equal to +1. (15%)
- 8. Find the determinant and inverse of the matrix A, where

each identity has size nxn, and there are k^2 submatrices. (15%)