國立成功大學 77學年度

考試(管理數學試題)第1頁

工業管理研究所

- 1. Find $\int_{0}^{1} \ln(x) dx$. (12%)
- 2. Calculate $\sum_{k=0}^{\infty} \int_{0}^{1} ((-1)^{k} x^{k} / k!) dx$. (12%)
- 3. What is basis? Show that the vectors (1 0 3), (2 1 7), and (0 0 3) form a basis for the 3-dimensional space. (12%)
- 4. Prove that the necessary condition for x^* to be a local extremal point of a continuous function (differentiable) f(x) is $\nabla f(x^*)=0$. (12%)
- 5. Suggest one method for solving a set of m nonlinear equations with n variables. (12%)
- 6. For the following set of differential equations

$$dx_0(t)/dt = -\theta x_0(t)$$

$$dx_n(t)/dt = -\theta x_n(t) + \theta x_{n-1}(t)$$
, n=1,2,3,...

with boundary conditions

$$\lim_{t \to 0} x_0(t) = 1$$

$$\lim_{t\to 0} x_n(t)=0, \quad n=1,2,3,...$$

Solve
$$x_n(t)$$
, n=0,1,2,... (20%)

7. A quadratic function $f(x)=3x_1^2+4x_1x_2+6x_2^2$ in matrix form is $f(x)=x^2x_1$, where A is symmetric. This quadratic function can be transformed to $g(y)=y^2AQ$, where x=Qy and $D=Q^AQ$ is a diagonal matrix. Please find A, Q, and D, also show that the diagonal elements of D are just the eigenvalues of A. (20%)