國立成功大學 79 學年度工管所 考試(管理數學 試題)第1頁

Apply the Newton-Raphson method to find the extreme points of the (10%) following function:

 $f(x) = 4x^4 - 3x^2 + 3$

2. Two firms are in competition, each having profit depending in part (15%) upon the output of the other. Let the outputs of the two firms be O_1 and O_2 , while their profits are P_1 and P_2 . Suppose these quantities are related by the equations

 $P_1 = 70 O_1 - O_1^2 - O_2^2$ $P_2 = 90 O_2 - 2 O_2^2 - \frac{1}{2}O_1^2$

Determine profits if each firm acts independently to maximize its profit. Then determine the maximum value of P_1+P_2 if the firms decide to cooperate.

- 3. (i) Solve the difference equation given below, and then find r(7). (10%) r(n)=r(n-1)+2r(n-2); r(1)=2 and r(2)=12
 - (ii) Write the difference equation r(n)=r(n-1)+2r(n-2) in matrix (10%) form R(n+1)=AR(n), and then find the eigenvalues and eigenvectors of A.
- 4. Solve the following problem graphically: (10%)

maximize z=min{2x-8, -5x+3}
subject to

0 <u><</u> x <u><</u> 4

5. Find $\int_{x}^{3} \sinh(x) dx$ (10%)

6. For $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$ (15%)

the eigenvalues of A are -1, -2, -3. There is a matrix P such that p^{\uparrow} AP=D is diagonal. Find P, D.

7. Find the standard matrices for linear transformations T and T+U. (10%)

T(x,y)=(x-y,x), U(x,y)=(2y,x)

8. Prove that (10%)

 $\sum_{n=1}^{\infty} \frac{1}{(n+2)n!} = \frac{1}{2}$

254