85 學年度 國立成功失學 工管 所管理拟学 試題 共2頁 爾士班招生考試 工管 所管理拟学 試題 第/頁

- 1. (10%) Evaluate the following iterated integrals:
 - a) $\int_{1}^{3} \int_{-x}^{3x} \int_{ye^{x}}^{ye^{2x}} dz dy dx$
 - b) $\int_0^4 \int_x^{2\sqrt{x}} y^2 dy dx$
- 2. (10%) Find the local extrema (if they exist) of the following functions. Identify the local extrema whenever possible.
 - a) $f(x,y) = x^2 + y^2 2x + 3y + 7$
 - b) f(x,y) = xy + (x + y)(10 x y)
- 3.(10%) Given that z = f(x, y) is a function implicit in $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, find $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$, and $\frac{\partial^2 z}{\partial y^2}$.
- 4.(10%) Determine the value of x for which the following series are convergent or divergent:
 - a) $\sum \frac{\sin x}{n}$
 - b) $\sum (-1)^{n-1} nx^{2n+1}$.
- 5.(10%) Show that if $f:[a,b] \to R$ is continuous, then there exists a positive number M such that $x \in [a,b] \Rightarrow |f(x)| \le M$.

85 學年度 國立成功大學 工管 所管理數學 試題 共2 頁 第2 頁

- 6. (10%) Determine if W is a subspace of V based on the given conditions. Give your answers with details.
 - (a) (2%) Let $V = \mathbb{R}^3$. $W = \{(a,b,0): a,b \in \mathbb{R}\}$, i.e. W is the xy plane consisting of those vectors whose third component is 0;
 - (b) (4%) Let $V = \mathbb{R}^3$. $W = \{(a,b,c): a^2 + b^2 + c^2 \le 1\}$, i.e. W consists of those vectors whose length does not exceed 1;
 - (c) (4%) Let V be the vector space of all square $n \times n$ matrices over a field K. W consists of all matrices which commute with a given matrix T; that is, $W = \{A \in V: AT = TA\}$.
- 7. (10%) Find the dimension and a basis of the solution space W of the system

$$x + 2y + 2z - s + 3t = 0$$

$$x+2y+3z+s+t=0$$

$$3x + 6y + 8z + s + 5t = 0$$

- 8. (10%) Let T be the linear operator on \mathbb{R}^2 defined by T(3, 1) = (2, -4) and T(1, 1) = (0, 2). Find T(a, b).
- 9. (10%) Consider two bases of \mathbb{R}^2 : $\{e_1 = (1,0), e_2 = (0,1)\}$ and $\{f_1 = (1,3), f_2 = (2,5)\}$.
 - (a) (3%) Find the transition matrix P from $\{e_i\}$ to $\{f_i\}$.
 - (b) (3%) Find the transition matrix Q from $\{f_i\}$ to $\{e_i\}$.
 - (c) (4%) Show that $[v]_f = p^{-1}[v]_e$ for any vector $v \in \mathbb{R}^2$, where $[v]_f$ and $[v]_e$ are the coordinate vectors of v relative to $\{f_i\}$ and $\{e_i\}$, respectively.
- 10. (10%) Find all eigenvalues and a basis of each eigenspace of the operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x,y,z) = (2x + y, y z, 2y + 4z).