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3. (6%) Consider a confidence interval, with confidence coefficient 1- a, for the mean
of a normal distribution with known variance o?, based on a random sample of n
observations. Explain how the width of the interval changes

(1) (2%) as n is increased, keeping o and « fixed;

(i) (2%) as o is increased, keeping n and o fixed;

(iii) (2%) as « is decreased, keeping nand o fixed.

4. (14%)

(i) (4%) Describe the method of maximum likelihood.

(ii) (10%) If X denotes the number of the trial on which the first defective is foundina
series of independent quality-control tests, find the maximum likelihood estimator of
P, the true probability of observing a defective.

5. (15%) A discrete random variable Y takes the values -1, 0 and 1 with probabilities
16, 1-8 and 16 (6 &(0,1)), respectively. Let ¥, and Y, be two independent
random variables, each with the same distribution as Y.

(i) (5%) List the possible values of {Y,, YZ} that may arise and calculate the
probability of each.  Verify your answers.

(ii) (5%) By calculating the value of (¥, - )" for each possible pair {r.n},
determine the probability distribution of (Y2 - Y,): .

(ii1) (5%) Let X = (¥, - ¥)?, find the variance of X, V(X), as a function of 4.

6. (15%) Suppose that é, and éz are each unbiased estimators of 6, with variances
V(6,) = o? and V() =ol, respectively. A new unbiased estimator for 6 can be
formed by

(93 = aé, +(l—a)92,
where 0<a<l. If é, and éz are independent, how should a be chosen so as to

minimize ¥V (8,)?






