$$(c)'_{x}$$
 1. Solve $\frac{e^{x} + e^{-x}}{2} = 3$

$$\int_{0}^{\infty} e^{x} dx = \frac{x}{2x^{2} + 1}$$
, $y(0) = 1$, find y.

($o/\sqrt{3}$. Determine those points on the graph of $f(x) = \frac{x^3}{3} + \frac{x^2}{2} - 2x$ where the slope is zero.

$$(o)'$$
, 4. Compute $D_h \int_{h'}^{h'} (\frac{\sin t}{t}) dt$

- (c*/, 5. A real function f is said to be *increasing* on an interval < a, b > if $x_1 < x_2$ imply that $f(x_1) < f(x_2)$, where x_1, x_2 belong to < a, b >. Show that if the derivatives of f are greater than zero on < a, b >, then f is increasing on < a, b >.
 - (10%) Find the Maclaurin series for $f(x) = (1+x)^{1/3}$ and use it to compute $(30)^{1/3}$, correct to three places.
 - ¹7. (10%) Find all values of x for which the series $\sum \frac{(x-1)^n}{n^2 3^n}$ converges. Distinguish between absolute and conditional convergence.
 - . (10%) Find the area of the region inside the four-leaf rose $r = \sin 2\theta$.
 - 9. (10%) Find the tangent plane to the sphere $x^2 + y^2 + z^2 = 9$ at point (1, 2, 2).
 - 10. (10%) Find and interpret the directional derivative of $f(x, y) = 4 x^2 y^2$ at (1, 1) in the direction "Northeast"