- (10%) Using the basic definition of derivative, show that in the domain where functions fÌ. and g are both differentiable, $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$.
- (10%) Rigorously show that the mean value theorem applies to $f(x) = \sqrt{x}$ in the 2. interval [0, 4]. Find the mid point c that satisfies the theorem.
- 3. (10%) In an integrated circuit fabrication process, a spherical drop of etching chemical loses moisture by evaporation at a rate proportional to its surface area. What can you say about its radius?
- 4. (10%) A manufacturer receives an order for oil cans that are to have a capacity of k cubic centimeters. Each can is made from a rectangular sheet of metal by rolling the sheet into a cylinder; the lids are stamped out from another rectangular sheet. What are the most economical proportions of the can that minimizes the cost of metal sheet (Proportional to its area)?
- (10%) Using the chain rule only, find $\frac{d}{dr} \int_0^{\sin r} (1-t^2) dt$.

5.

6. Solve by Newton's method:
$$x^2 - 7 = 0$$
. (10%)

7. Compute
$$\lim_{h \to 0^+} (1 + ah)^{b/h}$$
 $(a > 0, b > 0)$ (10%)

8. Compute
$$\sum_{n=3}^{\infty} \left(\frac{1}{(n+1)(n-2)} + \frac{2^n - 1}{3^n} \right)$$
 (10%)

9. Solve
$$y''+5y'-6y=0$$
 and $y(0)=1$, $y'(0)=2$ (10%)

10. Compute the volume of the given set using integration: Bounded above and below by the planes x-2y+3z=4 and x-2y+3z=2, and laterally by the cylinder $x^2+(y-1)^2=1$. (10%)