有到它是研究的事故

編號: 370 系所:工業與資訊管

科目:統計學

本試題是否可以使用計算機: ☑可使用 , □不可使用 (請命題老師勾選)

- 1. (6%) Explain why the coefficient of variation can be used to compare the variability of two variables that are measured by different units and have different means and different standard deviations.
- 2. Consider the expression Cov(aX,bY+c) for random variables X and Y, where a, b, and c are constants.
 - (a) (3%) Show that Cov(aX,bY+c) = abCov(X,Y).
 - (b) (6%) Give the geometric interpretation for the equality given in (a).
- 3. Let the probability density function of random variable X be defined as the figure given below.
 - (a) (3%) Write down the expression of f(x).
 - (b) (6%) Calculate E(X) and Var(X).
 - (c) (6%) Let a population follow this probability distribution. A sample $\{x_1, x_2, ..., x_{50}\}$ is retrieved by using the simple random sampling. What is the probability distribution of the sample mean \bar{x} and why?

- 4. (8%) In performing the hypothesis testing about two population proportions, explain why the test statistic is $z = (\overline{p}_1 \overline{p}_2) / \sqrt{\overline{p}(1-\overline{p})(\frac{1}{n_1} + \frac{1}{n_2})}$ when H_0 : $p_1 p_2 \ge 0$.
- 5. In performing the hypothesis testing about two population means μ_1 and μ_2 , let the null hypothesis H_0 be $\mu_1 \mu_2 = 0$. Suppose that both populations are normally distributed, and that population standard deviations σ_1 and σ_2 are known.
 - (a) (6%) When the samples for the two populations are independent, what is the test statistic and why?
 - (b) (6%) When the samples for the two populations are matched, what is the test statistic and why?

本試題是否可以使用計算機: □可使用 □不可使用 (請命題老師勾選)

- b. (20%) Please explain the following terms in detail and state the relationship for each pair:
 - (a). Standardized Residual vs. Studentized Deleted Residual
 - (b). Prior Distribution vs. Posterior Distribution
 - (c). Binomial Population vs. Multinomial Population
 - (d). Normal Distribution vs. Multinormal Distribution
 - (e). Confidence Interval vs. Prediction Interval
 - (f). Outlier vs. Influential Observation
 - (g). Autocorrelation vs. Multicollinearity
 - (h). Standard Deviation vs. Standard Error
 - (i). Type Error vs. Type II Error
 - (j). Comparisonwise Type I Error Rate vs. Experimentwise Type I Error Rate
- η . (10%) Please State the usefulness of χ^2 test, i.e., under what kinds of situations, and for what objectives, will we use χ^2 test? Also, state the assumptions and testing processes in detail.
- 2. (5%) Please state the pros and cons for using non-parametric analysis?
- 9 (15%) After running a multiple regression analysis with five independent variables, the following ANOVA table is obtained

Source	d.f.	SS	MS	F
Regression				
Residual		224		
Total	45	270		

- (a). Please state the assumptions for the multiple regression analysis and how to examine them.
- (b). Please complete the above ANOVA table.
- (c). Calculate $R^2=?$
- (d). How to test the hypothesis H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$ when $\alpha = 0.05$.

(v).

(e). Suppose the following residual plots may be obtained from the residual analysis for the multiple linear regression, please state the possible causes and remedy strategies for each case:

