Entrance Examination for Institute of Transportation and Communication Management in 2012

The exam has 20 questions in blank and each question is 5 points． There are 100 points in total．

Question 1．If you have an income of $\$ 40$ to spend，if commodity 1 costs $\$ 4$ per unit，and commodity 2 costs $\$ 20$ per unit，then the equation for your budget line can be written as： \qquad ．

Question 2．Charlie has the utility function $U\left(x_{A}, x_{B}\right)=x_{A} x_{B}$ ．His indif－ ference curve passing through 32 apples and 8 bananas will also pass through the point where he consumes 4 apples and： \qquad bananas．

Question 3．Mike consumes two commodities，x and y ；and his utility func－ tion is $\min \{x+2 y, y+2 x\}$ ．He chooses to buy 8 units of good x and 16 units of good y ．The price of good y is 0.50 ．What is his income $I=$ \qquad ？

Question 4．Ernie＇s wage rate is $\$ 10$ an hour．He has no earnings other than his labor income．His utility function is $U(C, L)=C R^{2}$ where C is the amount of money he spends on consumption，and R is the number of hours a day he spends NOT working．
（a）Write an equation that describes Ernie＇s budget constraint \qquad ．
（b）How many hours does Ernie choose to work per day $W=$ \qquad ？
（c）How much money does he spend on consumption per day $C=$
Question 5．In the Chinese Professional Baseball League（CPBL），a base－ ball team（Brother Elephants）＇attendance depends on the number of games it wins per season and on the price of its tickets．The demand function it faces is $Q=N(20-p)$ ，where Q is the number of tickets（in hundred thou－ sands）sold per year，p is the price per ticket，and N is the fraction of its games that Brother Elephants wins．The team can increase the number of games it wins by hiring better players．If Brother Elephants spends C million dollars on players，it will win $0.7-1 / C$ of its games．Over the relevant range， the marginal cost of selling an extra ticket is zero．
（a）Write an expression for Brother Elephants＇profits as a function of ticket price and expenditure on players \qquad ．
（b）Find the ticket price $p=$
that maximizes revenues．
（c）Find the profit－maximizing expenditure on players $C=$ and the profit－maximizing fraction of the games to win \qquad ．

Question 6．Money demand in an economy in which no interest is paid on money is

$$
\frac{M^{d}}{P}=500+0.2-1,000 i
$$

（a）Suppose that $P=100$, GDP $Y=1,000$ ，and $i=0.10$ ．Find real money de－ mand \qquad and velocity \qquad ．
（b）Suppose that the price double from $P=100$ to $P=200$ ．Find nominal money demand \qquad and velocity \qquad ．

Question 7．An economy is described by the following equations：
Desired consumption：$C^{d}=130+0.5(Y-T)-500 r$ ．
Desired investment：$I^{d}=100-500 r$ ．
Government purchases：$G=100$ ．
Taxes：$T=100$ ．
Real money demand：$L=0.5 Y-1,000 r$ ．
Money supply：$M=1,320$ ．
Full－employment output： $\bar{Y}=500$ ．
Assume that expected inflation is zero so that money demand depends directly on the real interest rate．
（a）Write the equations for the $I S$ and $L M$ curves \qquad ， and \qquad ．（These equations express the relationship between r and Y when the goods and asset markets，respectively，are in equi－ librium．）
（b）Calculate the full－employment values of the real interest rate $r=$ \qquad ，and the price level $\underline{P}=$ \qquad －．
（c）Suppose that，because of investor optimism about future marginal prod－ uct of capital，the investment function becomes

$$
I^{d}=200-500 r
$$

Assuming that the economy was initially at full employment，what are the new values of consumption in the short run $C=$ \qquad and consump－ tion in the long run $C=$ ？

