## 系所組別：交通管理科學系乙，丙組

1．Evaluate the following limits
（a）（5 points） $\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7}$ ，
（b）（5 points） $\lim _{x \rightarrow 0^{+}} x^{1 / x}$ ．

2．Evaluate the following integrals
（a）（5 points） $\int_{1}^{4} \sqrt{x} \ln x d x$ ，
（c）（5 points） $\int_{0}^{2} \frac{x}{\left(1+x^{2}\right)^{2}} d x$ ，
（b）（5 points） $\int_{0}^{1} \int_{x}^{1} e^{x / y} d y d x$ ，
（d）（10 points） $\iint_{x^{2}+x y+y^{2} \leq 1} e^{-\left(x^{2}+x y+y^{2}\right)} d x d y$ ．

3．（5 points）Suppose that $f$ satisfies the equation $f(x+y)=f(x)+f(y)+x^{2} y+x y^{2}$ for all real numbers $x$ and $y$ ．Suppose further that

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x}=1
$$

Find $f^{\prime}(x)$ ．
4．（ 10 points）Set up TWO different definite integrals expressing the volume of the solid obtained by revolving the region bounded by the curves $y=e^{x}, y=2$ ，and $x=0$ about the line $y=-1$ ．Do not solve the integrals．
5．（8 points）If $\int_{0}^{x} f(t) d t=e^{2 x} \cos x+c$ ，find the value of the constant $c$ and the function $f(t)$ ．
6．（10 points）Let $f$ be a differentiable function with derivative $f^{\prime}$ ．A table of values for $f$ and $f^{\prime}$ is given below．

| $t$ | 0 | 3 | 6 | 9 |
| :---: | :---: | :---: | :---: | :---: |
| $f(t)$ | 1 | 2 | 7 | 5 |
| $f^{\prime}(t)$ | 1 | 4 | -1 | -2 |

Find the value of $\int_{0}^{1} f^{\prime}(3 t) d t$ ．
7．（a）（ 10 points）By completing the square，show that

$$
\int_{0}^{1 / 2} \frac{d x}{x^{2}-x+1}=\frac{\pi}{3 \sqrt{3}}
$$

（Hints：Write $x^{2}-x+1=(x-a)^{2}+b$ ．Recall that $\frac{d}{d x} \arctan x=\frac{1}{x^{2}+1}$ ）
（b）（10 points）Rewrite the integral in part（a）by express $1 /\left(x^{2}-x+1\right)$ as the sum of two power series （Hint：$x^{3}+1=(x+1)\left(x^{2}-x+1\right)$ ）．Prove the following formula for $\pi$ ：

$$
\pi=\frac{3 \sqrt{3}}{4} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{8^{n}}\left(\frac{2}{3 n+1}+\frac{1}{3 n+2}\right)
$$

8．（12 points）Let $f(x, y)=\frac{x^{3}}{3}+\frac{y^{3}}{3}-2 x^{2}-y^{2}$ ．Final all of the critical points of $f$ ，and classify each critical point as a local maximum，local minimum，or saddle point．

This exam has 8 questions，for a total of 100 points．

