※ 考生請注意：本試題不可使用計算機
＊下列十題每題均為 10 分，總計 100 分．
1．Evaluate $\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{2}+1}} d x$
2．Define $F(x)=\int_{0}^{x^{2}} x \sqrt{1-t} d t$ ，find $F^{\prime}(1)$
3．Find $\lim _{x \rightarrow 0} \frac{\sin x-x}{x-\ln (1+x)}$
4．Find an equation of tangent line to the curve $x=y+e^{\frac{x}{y}}$ at the point $(0,-1)$

5．Find a power series representation for the function $f(x)=x \cdot \ln \left(1+x^{2}\right)$ ，and find the interval of convergence

6．Find the volume of the solid bounded by the plane $z=0$ and the paraboloid $z=1-x^{2}-y^{2}$

7．Let $C(x)$ be the cost function of a catering service to cater x people．If it＇s marginal cost can be modeled by $\frac{\mathrm{dc}}{\mathrm{dx}}=\frac{5 \mathrm{x}}{\sqrt{\mathrm{x}^{2}+6400}}$ ，and when $\mathrm{x}=150$ ，the cost is $\$ 1000$ ．Find the cost function $C(x)$ ．

8．The emergency stopping distance in meter for a truck of weight ω tons traveling at $\nu \mathrm{km} / \mathrm{hr}$ on a dry road is $\mathrm{S}=0.002 \cdot \omega \mathrm{v}^{2}$
For a truck that weight 4 tons and is usually driven at $90 \mathrm{~km} / \mathrm{hr}$ ，estimate the extra stopping distance if it has an extra half ton of load and is traveling $5 \mathrm{~km} / \mathrm{hr}$ faster than usually．（Hint ：Use $\Delta \mathrm{S} \approx \mathrm{dS}$ ，where dS is the total differentials）

9．A company＇s profit is $\mathrm{P}=300 \cdot \mathrm{x}^{\frac{2}{3}} y^{\frac{1}{3}}$ ，where x and y are respectively，the amounts spent on production and advertising ．The company has a total of $\$ 60,000$ to spend．Use Lagrange multipliers to find the amount for production and advertising that maximize profit．

10．A company sells two products whose demand functions are given by $x_{1}=400-3 P_{1}$ ，and $x_{2}=600-2.4 \mathrm{P}_{2} \quad$ So，the total revenue is given by $R=x_{1} P_{1}+x_{2} P_{2} \quad$ Estimate the average revenue if the price P_{1} varies between $\$ 2$ and $\$ 5$ ，as the price P_{2} varies between $\$ 10$ and $\$ 20$ ．

