國立成功大學 83 學年度交管研究厅考試(工程力學(兩组) 試題)第 1 頁

3.

- 1. A planar truss system has the dimensions shown in Fig. 1. Member AE is continuous and can resist bending. All joints are pinned. Determine forces in
 - a) member BD
 - b) member DE
 - c) member Eq

(20%)

2. A 500-N force acts on a 150-Kg block placed on an inclined plane.

(Fig. 2.). The coefficients of friction between the block and the plane are $\mu s = 0.25$ and $\mu_k = 0.20$.

(μ_s : coefficient of static friction)

(μ_k : coefficient of kinetic friction).

Determine whether the block is in equilibrium, and find the value of the friction force.

(15%)

The system shown in Fig. 3 is subjected to a point load P at B. Point D is a hinge joint. Determine the reaction at support A.

(15%)

國立成功大學 83 學年度交管研究所考試(工程力學(两组)試題)共工页

4.

A conical pendulum ball of weight W attached to a cord of length L, as shown in Fig. 4., is revolving in a horizontal circle at a constant speed Vo. Let the angle formed by the cord with the vertical be θ . Neglecting the weight of the cord, determine (a) the tension in the cord and (b) the speed Vo, in terms of W, L, and θ . (20%)

Two weights W_1 and W_2 are hung from a flexible, but inextensible, cord over a frictionless pulley which moves upward with an acceleration a (Fig. 5.). Assuming that $W_2 > W_1$ and neglecting the rotating inertia of the pulley, derive an expression for the tension in the cord. (15%)

A B C P
D
Fig. 6.

6.

Draw the shear and bending moment diagrams for the problem shown in Fig. 6.

(15%)