- (1) Let $\{x_n\}$ be an arbitrary real sequence.
 - (i) Suppose that $\lim_{n\to\infty} x_n = r$, what is $\lim_{n\to\infty} |x_n| = ?$

5%

(ii) Conversely, if $\lim_{n\to\infty} |x_n| = r$, what is $\lim_{n\to\infty} x_n = ?$

5%

- (2) Assume $f''(x) = (x+4)e^{\frac{x-1}{2}}$, f'(1) = -10. Please find
 - (i) where f is concave up and concave down?

5%

(ii) where f is increasing and decreasing?

5%

- (3) Let $z = f(x, y) = \sqrt{16 x^2 y^2}$.
 - (i) Find the domain and the range of f.

5%

(ii) Sketch the level curves of f for z = 0, 1, 2, 3, 4.

- 5%
- (iii) In what direction does f decrease most rapidly at the point $(-1, \sqrt{3})$? (iv) Find all the critical points of f.
- 5% 5%

- (4) Let $f(x) = e^x + e^{-x} + 2\cos x$.
 - (i) Compute the third order Taylor's expansion with remainder around x=0.
 - 10% (ii) Use (i) to show that f(x) has a local minimum at x = 0. 10%
- (5) If f is a continuous function, find the value of the integral

10%

$$I = \int_0^a \frac{f(x)}{f(x) + f(a - x)} dx.$$

(Hint: let u = a - x and use the substitution method.)

- (6) Compute the double integral of $f(x,y) = \sqrt{|y-x^2|}$ over $S = [-1,1] \times [0,2]$. 10% (Hint: divide S into two regions $\{(x,y)|\ y < x^2\}$ and $\{(x,y)|\ y \ge x^2\}$)
- (7) The Ross-Simons Company has a monthly advertising budget of \$60,000. Their marketing department estimates that if they spend x dollars in newspaper advertising and y dollars on television advertising, then the monthly sales will be given by $z = f(x, y) = 90x^{1/4}y^{3/4}$ dollars.
 - (i) Determine how much money Ross Simons should spend on newspaper 10% advertising and on television advertising per month in order to maximize its monthly sales.
 - (ii) If the company decides to throw in additional \$2,000 as the advertis-10% ing budget, use the Lagrange multiplier to estimate what the maximum monthly sales will be under the new budget plan?