1．Find the following derivatives．
（a）$\frac{d}{d x} \ln \left(x^{2}+3^{x}\right)$, at $x=1$
（b）$D_{x} \sin e^{2 x}$

2．Find the following integrals．
（a） $\int \frac{t}{\sqrt{1-t^{4}}} d t$
（b） $\int x^{2} \ln x d x$
（c） $\int_{0}^{\infty} \frac{x+1}{e^{3 x}} d x$
（d） $\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$

3．Test $\int_{1}^{4} \frac{1}{(x-2)^{2}} d x$ for convergence．

4．Find the area between the curves $y=12-3 x^{2}$ and $y=4 x+5$ from $x=0$ to $x=3$ ．

5．Verify that $\int_{1}^{x^{r}} \frac{1}{t} d t=r \int_{1}^{x} \frac{1}{t} d t, \forall x>0$

6．Beginning 1 month from now，each month $\$ 250$ will be deposited into an account where the interest is compounded continuously at the annual rate of 9 percent．Use a definite integral to approximate the amount of money in the account immediately after the $36^{\text {th }}$ deposit．

7．The present value of the continuous stream of income $C(t)$ dollars per year，where t is the number of years from now，for T years at continuous interest rate r is $\int_{0}^{T} C(t) e^{-r t} d t$ ．A business generates income at the rate of $2 t$ million dollars per year，where t is the number of years from now．Find the present value of this continuous stream for the next five years at the continuous interest rate of 10% ．

8．Suppose that you have saved $\$ 5000$ ，and that you expect to save an additional $\$ 3000$ during each year．If you deposit these savings in a bank paying 5% interest compounded continuously，find a formula for your bank balance after t years．

