86 學年度 國立成功大學 碩士班招生考試

企管例形 微積分

試題 共 / 頁

注意:未寫明演算過程者不予計分

1. Suppose that $\lim_{x\to x_0} f'(x)$ exists. Does it follow that f(x) is differentiable at x_0 ? Give a proof to show that the statement is correct or produce a counterexample to show that it is false. (6 %)

2. Determine if the following limits exist:

(a).
$$\lim_{(x,y)\to(0,0)} f(x,y) = \frac{xy}{x^2 + y^2}$$
 (5 \(\frac{\(x\)}{x}\))

(b).
$$\lim_{(x,y)\to(0,0)} f(x,y) = \frac{x^2y}{x^4 + y^2}$$
 (5 \(\frac{\pi}{x}\))

3. Suppose that f(x) is differentiable on $(0,\infty)$ and $f'(x) \to 0$ as $x \to \infty$. Let g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to \infty$. (7 %)

4. Consider the sequence $\{f_n(x)\}_{n=1}^{\infty}$, where $f_n(x) = nx/(1 + nx^2)$, $x \ge 0$. Find the limit of $\int_1^2 f_n(x) dx$ as $n \to \infty$. (7 \Re)

5. For what values of a and b is the function

$$f(x) = \frac{1}{x^2 + ax + b}$$

bounded on the interval [-1,1]? Find the absolute maximum on that interval. (15 %)

6. Find (a) $\lim_{x\to 0^+} (\sin x)^x$ (5 %)

(b)
$$\lim_{x\to 0^+} (e^{-1/x}/x)$$
 (5 \Re) (c) $\lim_{x\to 0} (1+ax)^{1/x}$ (5 \Re)

7. Find (a) $\iint_D e^{y^2} dx dy$, where D is the region in the first quadrant bounded by x = y and y = 1. (7 \Re)

(b)
$$\iint_D xy dx dy$$
 and D be the region $D = \{(x,y)|x^2 + y^2 \le 1, x \ge 0, y \ge 0\}$. (7 %)

8. Find the minimum distance from the origin to the curve of intersection of the surfaces z(x+y)=-2 and xy=1. (10 %)

9. (a) Suppose that f(x) is monotone and its derivative f'(x) is Riemann integrable on [a,b]. Let g(x) be continuous on [a,b]. Show that there exists a number $c, a \leq b \leq c$, such that

$$\int_{a}^{b} f(x)g(x)dx = f(a)\int_{a}^{c} g(x)dx + f(b)\int_{c}^{b} g(x)dx \tag{10 }$$

(b) Deduce from (a) that for any b > a > 0,

$$\left| \int_{a}^{b} \frac{\sin x}{x} dx \right| \le \frac{4}{a} \tag{6.4}$$