科目:微積分

I. Multiple choice (5 points each for #1~#8; 10 points each for #9 and #10)

1.
$$\lim_{n\to\infty} (\sqrt{n^{200} + n^{100} + 1} - n^{100}) =$$

(a)
$$\infty$$
 (b) 0 (c) 1/2 (d) 1 (e) $-\infty$

2. Define a sequence by $a_n = \int_0^1 (1-x^2)^n dx$, then $\lim_{n\to\infty} (\sqrt{a_n})^{1/n}$ is

(a)
$$\infty$$
 (b) 0 (c) 1 (d) -1 (e) 1/2

3.
$$\lim_{x\to 0} e^{-1/x^2} / x^4 =$$

(a)
$$\infty$$
 (b) 0 (c) -1 (d) e (e) 1

4. If $|f(x)/x| \le M$ for $x \ne 0$, then $\lim_{x \to 0} f(x) =$

(a)
$$\infty$$
 (b) 0 (c) $M/2$ (d) 1 (e) M

5. Which statement is correct?

(a) If
$$\lim_{x\to a} f(x)g(x)$$
 exists then $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist.

(b) If
$$\lim_{x\to a} |f(x)|$$
 exists then $\lim_{x\to a} f(x)$ exists too.

(c) If
$$\lim_{x\to a} f(x) = L$$
 then $\lim_{x\to a} |f(x)| = |L|$

(d) If
$$\lim_{x\to a} f(x)$$
 exists then $\lim_{x\to a} |f(x)|$ may not exist.

(e)
$$\lim_{x\to a} \frac{f(x)}{|f(x)|} = 1$$

6. For the function $f(x, y) = x^3 + y^3 - 3xy$, which statement is correct?

(a) the partial derivative of
$$f(x, y)$$
 with respective to y is $3y^2$

(b)
$$f(x, y)$$
 has local minimum at $(1,1)$

(c)
$$f(x, y)$$
 has local maximum at $(0,0)$

7.
$$\int_0^4 \min\{6x, 5 + x^2\} dx =$$

8.
$$\int_3^5 \frac{x-6}{x^2-2x} dx =$$

(背面仍有題目.請繼續作答)

科目:微積分

9. Select incorrect statements. (there may be more than one incorrect statements)

(a)
$$\frac{x}{1+x} \le \ln(x+1) \le x$$
 for $x > -1$ and $x \ne 0$

(b)
$$\ln(x+1) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}$$

(c)
$$\int_{1}^{3} \ln(x+1)dx = -(1/4)$$

(d)
$$\lim_{x\to 0} x \ln(1+x) = 0$$

(e) The integral
$$\int_0^\infty (\ln(x+1))/(x+1)dx$$
 converges

10. Select correct statements. (there may be more than one correct statements)

(a) If
$$f(x)$$
 is continuous at $x = 5$ then $\lim_{x \to 5} f(x) = f(5)$.

(b) If
$$f'(x) = g'(x)$$
 then $f(x) = g(x)$.

- (c) The greatest integer function is denoted by [x] which represents the greatest integer $\leq x$, and it is continuous at every real number x.
- (d) Given that $|f'(x)| \le 1$ for all real numbers x, then |f(z) f(y)| < |z y|.
- (f) If f(x) is differentiable in [a, b] then there is at least one c in [a, b] such that $\int_a^b f(x)dx = f(c)(b-a)$
- II. Applications and Computation (Please show all work and 10 point for each problem)
- 1. A manufacturer can produce three distinct products in quantities x, y, z, respectively, and thereby derive a profit f(x, y, z) = 2x + 8y + 24z. Find the values of x, y, z that maximize profit if production is subject to the constraint $x^2 + 2y^2 + 4z^2 = 4.5 \times 10^9$.

2. Show that
$$n \binom{n-1}{b-1} \int_0^p x^{b-1} (1-x)^{n-b} dx$$
 is equal to $\sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k}$

- 3. Would you rather collect NT15,000 per year for 10 years or NT10,000 per year in perpetuity? Assume that banks pay an annual interest of 10% compounded continuously.
- 4. Find $\iint_R \frac{1}{y} dx dy$, where R is the region bounded by the curves $y^3 = x^2$, $y^3 = 4x^2$, and the lines y = x, y = 5x.