系所組別: 企業管理學系丁組 考試科目: 微積分

488# :

#687 F1 109 : 0.306 - #67.77 : 3

※ 考生請注意:本試題 ☑可 □不可 使用計算機

- I. True or False (30 points, 3 points each)
 - 1. A sequence function of $f_x(x) = \frac{x}{1 + x^2}$ on [0,1] converges uniformly.
 - 2. All continuous functions have derivatives.
 - 3. The sequence $b = 0.15^{\circ}$ converges to $\frac{1}{1.245}$.
 - 4. If $\lim a_n = 0$, then $\sum_{n=0}^{\infty} a_n$ can be said to converge.

 - 5. The domain of function $f(x) = (x+1)^t$ is the interval of $(-1, \infty)$
 - If the trajectory of f(x) runs through the points (0,0) and (2,2) and f'(x) is continuous, then ∫ f'(x) dx = 2.
 - 7. f(x) = |x| has an antiderivative on the interval [-1,1].
 - Assuming f is any odd function and continuous on [-c, c], where c is a
 - constant. Then, the area between y = f(x), -c, c and y = 0 is zero. 9. Any polynomial function is continuous.
 - If f(x) and g(x) defined in R are uniformly continuous, then f(x)g(x) is also uniformly continuous.
 - II. Multiple Choice Questions (40 points, 4 points each, Only one choice)
 - Let $f(x) = e^x$ be defined on the interval [0,4]. What is the average value of f?

 (A) $\frac{e^4-1}{4}$,
 - (B) $\frac{e^4-1}{2}$, (C) $\frac{e^2-1}{2}$.

1.

系所組別:	企業管理學系	下紅							
考試科目:	微積分						考試	⊟期:0306・	節次:3
※ 考生請注	主意:本試題	四可	□不可	使用計算機	ŧ				
	2.	What i	s the val	ıe, c, making	the average v	alue of f equal	to $f(c)$?		
		(A) 1.	614,						1
		(B) 3.2	884,						
		(C) 2.5	952.						
	3.	The ve	locity fu	nction is $v(a$	t) = 3t - 7, 0	$\leq t \leq 4$, what is	the		
		displac	ement?						i
		$(A)\frac{7}{3}$,							
		(B) -4,							
		(C) -7.							
	4.	Based	on questi	on 3 above,	what is the dis	stance traveled?			
		$(A)\frac{65}{4}$,						
		(B) 5,							
		$(C)\frac{31}{2}$							
		(C) 2							
5	. т	he dem	and for a	certain seda	n model is 12,	,000 units when	the price		
	is	NT\$50	00,000. T	he demand is	ncreases by 1,	000 units if the	price is		
	d	rops by	NT\$20,0	000. Therefor	re, the demand	function is			
	(4	A) $-\frac{1}{20}$	price+2	,000,					
	a	B) -1	price+	37,000,					
		20).						

國立成功大學九十九學年度碩士班招生考試試題

共4頁,第2頁

編號: 304

Based on question 5 above, what are the demand units once the price is NT\$450,000?
 (A)150,000 units,
 (B)10,012,000 units,
 (C) 14.500 units.

(C) -20 price +10,012,000.

系所組別: 企攀管理學系丁組 考試科目: 微積分

9.

券村日期:0306:航次:3

※ 考生請注意:本試顯 ▽□ □不可 使用計算機

7 What is the natural domain of $f(x) = \frac{x-2}{x^3 + 4x^2 + 50x + 70}$? (A) natural domain is where $x \neq 0.3.5$. (B) natural domain is where x ≠ 2.5.7. (C) natural domain is where r ≠0.2.7.

8. Based on the question 7 above, what are the vertical asymptotes of the function f?

> (A) x=5.7. (B) x=0.5.

(C) x=2.7.

What is the y in terms of x for the following initial value problem: $\frac{dy}{dx} = 3y(x+1)$, and $y(0) = e^{9}$?

(A) $y = \exp(\frac{9}{3}x^2 + 3x + 1)$,

(B) $y = \exp(\frac{1}{2}x^2 + 9x + 1)$,

(C) $y = \exp(\frac{3}{5}x^2 + 3x + 9)$.

Based on question 9, what is the value of y when x=2? 10.

(A) e20.

(B) e21.

(C) e22.

編號:

國立成功大墨九十九墨在度碩十班招生者認試題

共心頁 第4頁

304 系所組別: 企業管理學系丁組

考試科目: 微積分

考試日期:0306、節次:3

III. Partial Credit Questions (30 points)

1. Let

$$f(x, y) = 3x^3 + 2y^3 - 3x + 4y + 12$$

- (a) Find the critical points of f(x, y), (6 points)
- (b) Find which critical points are the relative maximum and relative minimum points of f(x, y). (4 points)
- (c) Find which critical points are the saddle points of f(x, y). (4 points)
- 2. Let

$$y' = x^2 - y$$
, and $y(0) = 1$.

- (a) Using third-order Taylor expansion to solve y in terms of x. (10 points)
- (b) Approximate y(2) using the third-order Taylor expansion. (6 points)