	75 國立成功大學一〇一學年度碩士班招生考試試題	共 ン頁・第1]							
系所組別: ******	統計學系 數學								
考試科目:	数子	考試日期:0225,節次							
	1. Find the following derivatives								
	1. Find the following derivatives.	(10%)							
	(a) $\frac{d}{dx}e^{ x^3+3^x }$ (b) $D_x \sin(\ln x^3)$								
	2. Find the following integrals.	(10%)							
	(a) $\int \sin^2 3x \cos^4 3x dx$ (b) $\int_0^\infty \frac{x + \sqrt{x}}{e^{2x}} dx$								
	3. Find the following limits.	(10%)							
	(a) $\lim_{x \to 0^+} (e^x + 2x)^{3/x}$ (b) $\lim_{n \to \infty} \sum_{k=0}^n \frac{2^k}{k!}$								
	4. Test the following series for convergence.								
	$(a)\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\tan^{-1}k} \qquad (b)\sum_{k=1}^{\infty} \frac{(-1)^{k+1}\ln k}{k}$	(10%)							
	5. Find the area between the curves $y = 12 - 3x^2$ and $y = 4x + 5$ from	x = 0 to							
	x = 3.	(10%)							
	6. Use double integral to calculate the area Ω enclosed by $y = x^2$ and $x + y = 2$.								
		(10%)							
	7. Let T be a solid with volume								
	$V = \int \int_{T} \int dx dy dz = \int_{0}^{2} \int_{0}^{9-x^{2}} \int_{0}^{2-x} dz dy dx.$								
	Find the values of a, b, c in the following representations.								
	(a) $V = \int_0^a \int_0^b \int_0^c dy dx dz.$								
	(b) $V = \int_0^5 \int_0^2 \int_0^a dz dx dy + \int_5^9 \int_0^b \int_0^c dz dx dy.$	(10%)							

(背面仍有題目,請繼續作答)

國立成功大學一〇一學年度碩士班招生考試試題

共2頁,第2頁

(10%)

8. Determine whether the quadratic form

 $Q = 2(x_1^2 + x_2^2 + x_3^2 - x_1x_2 - x_2x_3 - x_1x_3)$

is positive definite or semi-positive definite.

9. Find the set containing the largest possible number of independent vectors among the following vectors. (10%)

	1		1				0		0		[0]
<i>v</i> ₁ =	-1	<i>v</i> ₂ =	0		0		1		1	1	0
	0		$v_2 = \begin{bmatrix} 1\\0\\-1\\1 \end{bmatrix} v_3 = \begin{bmatrix} \\ \\ \end{bmatrix}$	0	$V_4 =$	-1	$-1 v_5 =$	0 and	and $v_6 =$	$v_6 = 1 $.	
	1		1		1_		0		1		[-1]

10. Suppose you know that the 3 by 4 matrix A has the vector s = (2, 3, 1, 0) as the only special solution to $A\mathbf{x} = \mathbf{0}$.

- (a) What is the rank of A? (2%)
- (b) What is the exact row reduced echelon form R of A? (2%)
- (c) What is the column space of A?(2%)(d) How do you know that $A\mathbf{x} = b$ can be solved for all b?(2%)
- (d) How do you know that Ax = b can be solved for all b? (2%) (e) What is the left nullspace of A? (2%)