系所組別：統計學系

考試科目：數理統計

You must show all your works in order to get all credit．

1．X has distribution function $F(x)=\left\{\begin{array}{c}c e^{x} \quad \text { if } x<0 \\ p+c\left(2-e^{-x}\right) \quad \text { if } x \geq 0\end{array}\right.$ ，where $0<p<1$ ．
（ 8% ）（a）Find the value of c and $f(x)$ ，the pdf of X ．
（8\％）（b）Find the expectation $E(X)$ and the variance $\operatorname{Var}(X)$ ．
（ 8% ）（c）Find the moment generating function of X ．

2．Let X and Y have joint probability density function（pdf）

$$
f(x, y)=1 ; 0<x<1,0<y<1 \text {, and zero otherwise. }
$$

（7\％）（a）Find the joint pdf of $\mathrm{U}=\mathrm{X}+\mathrm{Y}$ and $\mathrm{V}=\mathrm{X}-\mathrm{Y}$ ．
（7\％）（b）Find the marginal pdf of U ．

3．Let X_{1}, \ldots, X_{n} be iid Poisson (λ) ，and let λ have a gamma（ α, β ）distribution with $\mathbf{E}(\lambda)=\alpha \beta$ ．
（7\％）（a）For squared error loss，find the Bayes estimator of λ ．
（7\％）（b）Find the Bayes risk of the Bayes estimator．

4．Let X_{1}, \cdots, X_{n} be a random sample of size \mathbf{n} from a distribution with pdf

$$
f(x ; \eta, \theta)=\theta^{-1} e^{-(x-\eta) / \theta}, x>\eta
$$

（8\％）（a）Find the maximum likelihood estimate（MLE）$\hat{\theta}$ of θ and MLE $\hat{\eta}$ of η ．
（8\％）（b）Show that $\hat{\theta}$ and $\hat{\eta}$ are independent．
（ 8% ）（c）Find the uniformly minimum variance unbiased estimate of η ．
（ 8% ）（d）Find a $1-\alpha$ confidence interval of θ by pivotal methods．
$\mathbf{(8 \%})$（e）Find the distribution of $(\mathbf{n}-1)\left(X_{(1)}-\eta\right) / \hat{\theta}$ ，where $X_{(1)}=\min \left(X_{1}, \cdots, X_{n}\right)$ ．
（8\％）（f）Find the critical region for a size α generalized likelihood ratio test of $H_{0}: \eta \leq \eta_{0}$ versus $H_{a}: \eta>\eta_{0}$.

