

－．True or False $2 \% \times 15=30 \%$

For the following statements，please answer \mathbf{T} if it is true and \mathbf{F} otherwise．

1．The sample mean of a simple random sample is an unbiased estimator of the population mean for any population．

2．X and Y are two random variables with respective expected values μ_{x} and μ_{y} ，and $U=X+Y$ ，then the equality $\mathbf{E}(U)=\mu_{x}+\mu_{y}$ requires the assumption that X and Y are independent．

3．If two events A and B are independent，then they are disjoint as well．

4．If \mathbf{S} is a sufficient statistic，and \mathbf{T} is a function of \mathbf{S}（i．e． \mathbf{T} can be computed from \mathbf{S} ）， then T is a sufficient statistics as well．

5．The two－sample t test is a not a uniformly most powerful（UMP）test to examine $H_{o}: \mu=\mu_{o}$ against $H_{a}: \mu \neq \mu_{0}$ even if all the assumptions are satisfied．

6．If there are two sequence of random variables X_{n} and Y_{n} and $X_{n} \xrightarrow{p} a, Y_{n} \xrightarrow{p} b$ ，then $g\left(X_{n}, Y_{n}\right) \xrightarrow{p} g(a, b)$ as long as $g(x, y)$ is continuous at (a, b).

7．If a random variable $X \geq a$ ，then $\mathrm{E} X \geq a$ ．
8．If $\hat{\theta}$ is the maximum likelihood estimator（MLE）for θ and it is unbiased（ $\mathrm{E} \hat{\theta}=\theta$ ）， then $\hat{\theta}$ is the best unbiased estimator．

9．If $\mathbf{X}_{n}=\left(X_{1 n}, \ldots, X_{m n}\right)^{\prime}$ is a sequence of random vectors，then $\mathbf{X}_{n} \xrightarrow{p} \mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)^{\prime}$ assures that $X_{i n} \xrightarrow{p} a_{i}, \forall i=1, \ldots, m$ ，but the reverse is not necessarily true．
考試科目：數理統計 考試日期： 0224 ，筑次：2
※ 考生請注意：本試題不可使用計算機

10．If $X_{i} \stackrel{\text { iid }}{\sim} N\left(\mu, \sigma^{2}\right)$ ，then $T=n^{1 / 2}(\bar{X}-\mu) / \sigma$ is a pivotal quantity for μ since the distribution of T is completely known as $T \sim N(0,1)$ ．

11．If T_{n} is an unbiased estimator of θ ，where T_{n} is a statistic base on X_{1}, \ldots, X_{n} ，then T_{n} is also consistent for θ as long as $\operatorname{Var}\left(T_{n}\right) \rightarrow 0$ ．

12．X_{1}, \ldots, X_{k} are independently distributed Exponential random variables，then $T=$ $\sum_{i=1}^{k} X_{i}$ is distributed as a Gamma distribution．

13．If X and Y are independently and identically distributed as standard normal distribu－ tion and $W=X / Y$ ，then $\mathrm{E} W=1$ and $\operatorname{Var}(W)$ does not exist．

14．If X and Y are independent random variables with moment generating function $M_{X}(t)=$ $(1-t)^{-2}$ and $M_{Y}(t)=(1-t)^{-3}$ ，then the moment generating function of $V=X+Y$ has moment generating function $M_{V}(t)=(1-t)^{-5}$ ．

15．If both of the conditional distribution of X given Y and the distribution of Y are normal，then the marginal distribution of X is a normal one as well．

\therefore Fill in the Blanks $4 \% \times 5=20 \%$

1．Let Y be uniformly distributed on $(-\theta, \theta)$ ，and the conditional distribution of X given $Y=y$ is a uniform one as

$$
(X \mid Y=y) \sim \begin{cases}U n i(0, y), & \text { if } y \geq 0 \\ \operatorname{Uni}(y, 0), & \text { if } y<0\end{cases}
$$

，then $\mathrm{E} X=$ \qquad and $\operatorname{Cov}(X, Y)=$ \qquad

2．If X and Y are jointly distributed as a trinomial distribution with parameters n, θ^{2} ， $2 \theta(1-\theta)$ ，and $(1-\theta)^{2}$ ，then the best unbiased estimator of θ is \qquad
3．There is a coin which we know if it is not a fair one，then the probability of head is 0.8 ．If it is flipped and the the result is head，what would you do you for the most powerful size－0．1 test to examine

$$
H_{o}: \text { It is a fair coin. }
$$

against

$$
H_{a}: \text { It is not a fair coin }
$$

\qquad
4．Let \bar{X}_{n} be the sample mean computed from a sample with mean μ and variance $\sigma^{2}<\infty$ ， then the asymptotic distribution of $U_{n}=n^{1 / 2}\left(\bar{X}_{n}^{2}-\mu^{2}\right)$ is $U_{n} \xrightarrow{d}$ \qquad

三，Problems 50\％

1．（ 10% ）Consider a game in which the player is going to flip a fair coin until he／she gets a head．Also，if the head comes on the $k_{t h}$ toss，the player gets NTD 2^{k} ．What is your expected return in this game，and how much would you like to pay to play this game？

2．（ 10% ）Let \mathbf{X} be a continuous random vector with variance－covariance matrix $\boldsymbol{\Sigma}$ ，please prove that $\boldsymbol{\Sigma}$ is positive definite．

3．(15%) Let X_{1}, \ldots, X_{n} be random sample from a Poisson distribution with mean θ ．Is there an efficient unbiased estimator for θ^{2} ？Find it if there is one，and give the reason if it does not exist．

4．(15%) Let X_{1}, \ldots, X_{n} be random sample from $N\left(\theta, \theta^{2}\right)$ ，is there a complete sufficient statistic for this model？Find it if there is one，and give the reason if it does not exist．

