編號: 265 國立成功大學 102 學年度碩士班招生考試試題		共3頁,第 頁
系所組別:統計學系		
考試科目:數理統計		考試日期:0224,節次:2
※ 考生請注意:本試題不可使用計算機	請勿在本試題紙上作答,否則不予計分	

- True or False $2\% \times 15=30\%$

For the following statements, please answer T if it is true and F otherwise.

- The sample mean of a simple random sample is an unbiased estimator of the population mean for any population.
- 2. X and Y are two random variables with respective expected values μ_x and μ_y , and U = X + Y, then the equality $\mathbf{E}(U) = \mu_x + \mu_y$ requires the assumption that X and Y are independent.
- 3. If two events A and B are independent, then they are disjoint as well.
- If S is a sufficient statistic, and T is a function of S (i.e. T can be computed from S), then T is a sufficient statistics as well.
- 5. The two-sample t test is a not a uniformly most powerful (UMP) test to examine $H_o: \mu = \mu_o$ against $H_a: \mu \neq \mu_0$ even if all the assumptions are satisfied.
- 6. If there are two sequence of random variables X_n and Y_n and $X_n \xrightarrow{p} a$, $Y_n \xrightarrow{p} b$, then $g(X_n, Y_n) \xrightarrow{p} g(a, b)$ as long as g(x, y) is continuous at (a, b).
- 7. If a random variable $X \ge a$, then $EX \ge a$.
- 8. If $\hat{\theta}$ is the maximum likelihood estimator (MLE) for θ and it is unbiased ($E\hat{\theta} = \theta$), then $\hat{\theta}$ is the best unbiased estimator.
- 9. If $\mathbf{X}_n = (X_{1n}, \dots, X_{mn})'$ is a sequence of random vectors, then $\mathbf{X}_n \xrightarrow{p} \mathbf{a} = (a_1, \dots, a_m)'$ assures that $X_{in} \xrightarrow{p} a_i, \forall i = 1, \dots, m$, but the reverse is not necessarily true.

(背面仍有題目,請繼續作答)

國立成功大學 102 學年度碩士班招生考試試題

系所組別:統計學系 考試科目:數理統計

編號: 265

※ 考生請注意:本試題不可使用計算機

- 10. If $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$, then $T = n^{1/2} (\bar{X} \mu) / \sigma$ is a pivotal quantity for μ since the distribution of T is completely known as $T \sim N(0, 1)$.
- 11. If T_n is an unbiased estimator of θ , where T_n is a statistic base on X_1, \ldots, X_n , then T_n is also consistent for θ as long as $Var(T_n) \to 0$.
- 12. X_1, \ldots, X_k are independently distributed Exponential random variables, then $T = \sum_{i=1}^{k} X_i$ is distributed as a Gamma distribution.
- 13. If X and Y are independently and identically distributed as standard normal distribution and W = X/Y, then EW = 1 and Var(W) does not exist.
- 14. If X and Y are independent random variables with moment generating function $M_X(t) = (1-t)^{-2}$ and $M_Y(t) = (1-t)^{-3}$, then the moment generating function of V = X + Y has moment generating function $M_V(t) = (1-t)^{-5}$.
- 15. If both of the conditional distribution of X given Y and the distribution of Y are normal, then the marginal distribution of X is a normal one as well.

= Fill in the Blanks $4\% \times 5 = 20\%$

1. Let Y be uniformly distributed on $(-\theta, \theta)$, and the conditional distribution of X given Y = y is a uniform one as

$$(X|Y = y) \sim egin{cases} Uni(0,y), & ext{if } y \geq 0 \ Uni(y,0), & ext{if } y < 0 \end{cases}$$

, then $\mathbf{E}X = \underline{1}$ and $\mathbf{Cov}(X, Y) = \underline{2}$

系所組別:統計學系 考試科目:數理統計

編號: 265

※ 考生請注意:本試題不可使用計算機

- 2. If X and Y are jointly distributed as a trinomial distribution with parameters n, θ^2 , $2\theta(1-\theta)$, and $(1-\theta)^2$, then the best unbiased estimator of θ is ______
- 3. There is a coin which we know if it is not a fair one, then the probability of head is 0.8. If it is flipped and the the result is head, what would you do you for the most powerful size-0.1 test to examine

$$H_o$$
: It is a fair coin.

against

 H_a : It is not a fair coin

____4

4. Let \bar{X}_n be the sample mean computed from a sample with mean μ and variance $\sigma^2 < \infty$, then the asymptotic distribution of $U_n = n^{1/2}(\bar{X}_n^2 - \mu^2)$ is $U_n \xrightarrow{d} 5$

\pm Problems 50%

- 1. (10%) Consider a game in which the player is going to flip a fair coin until he/she gets a head. Also, if the head comes on the k_{th} toss, the player gets NTD 2^k . What is your expected return in this game, and how much would you like to pay to play this game?
- 2. (10%) Let X be a continuous random vector with variance-covariance matrix Σ , please prove that Σ is positive definite.
- (15%) Let X₁,..., X_n be random sample from a Poisson distribution with mean θ. Is there an efficient unbiased estimator for θ²? Find it if there is one, and give the reason if it does not exist.
- 4. (15%) Let X_1, \ldots, X_n be random sample from $N(\theta, \theta^2)$, is there a complete sufficient statistic for this model? Find it if there is one, and give the reason if it does not exist.