编號: 265 國立成功大學 103 學年度碩士班招生考試試題	共 2 頁,第1頁
系所組別:統計學系	
考試科目:數學	考試日期:0223, 節次:1
※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本	本試題紙上作答者,不予計分。
Please write down all your works on the answer sheet.	
1. A function is defined by	
$f(x) = \int_{0}^{\pi} \cos t \cos(x-t) dt, \ 0 \le x \le 2\pi$	
Find the minimum value of <i>f</i> .	(10%)
2. Find an equation of the tangent line to the graph of the equation	
$4e^{xy} + \ln(x^2y + 1) = 4$ at the point $(x, y) = (e, 0)$.	(10%)
3. If <i>n</i> is a positive integer, find the following integrals.	(20%)
(a) $\int_{0}^{1} (\ln x)^{n} dx$ (b) $\int_{0}^{1} (1-x^{2})^{n} dx$	
<u>∞</u> 1	
4. Find the sum of the series $\sum_{n=2}^{\infty} \ln(1-\frac{1}{n^2})$.	(10%)
5. Evaluate the integral $\int_{0}^{1} \int_{0}^{1} e^{\max\{x^2, y^2\}} dy dx$,	
Where $\max\{x^2, y^2\}$ means the larger of the numbers x^2 and y^2 .	(20%)
6. Let	
$A = \begin{bmatrix} 1 & 3 & 6 & 10 & 15 \end{bmatrix}$.	
$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70 \end{bmatrix}.$	
Use Gaussian elimination to find the determinant of all upper left submatrices A_{k} , $k = 1, 2, 3, 4, 5$.	
Note that $A_5 = A$.	(10%)
(背面仍有題目,請繼續作答)	

編號: 265 國立成功大學 103 學年度碩士班招生考試試題 共 2 頁,第 2 頁 系所組別:統計學系 考試科目:數學 考試日期: 0223, 節次: 1 ※考生請注意:本試題不可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

7. Find the 3 by 3 symmetric matrix A and the sum and the product of all its eigenvalues. (10%)

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} A \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = x_1^2 + 2x_2^2 + 7x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3.$$

8. (i) If A is a positive definite n×n matrix, and R is any real n×m matrix, what can you say about the definiteness of the matrix R^TAR? For which matrices R is R^TAR positive definite?
(ii) If A is an indefinite n×n matrix, and R is any real n×m matrix of rank n, what can you say about the definiteness of the matrix R^TAR?

(iii) If A is an indefinite $n \times n$ matrix, and R is any real $n \times m$ matrix, what can you say about the definiteness of the matrix $R^T A R$? (10%)