※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
1．（40 points）Given $x_{i}, Y_{i}, i=1,2, \ldots, n$ ，independently follows $N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right), \beta_{0}$ and β_{1} unknown，but σ^{2} known．Also，not all the x_{i}^{\prime}＇s are equal，$\sum_{i=1}^{n} x_{i}=0, n \geq 2$ ．
（1）（8 points）Find the joint sufficient statistics for $\left(\beta_{0}, \beta_{l}\right)$ ．
（2）（8 points）Find the maximum likelihood estimators（MLEs）of $\left(\beta_{0}, \beta_{l}\right)$ ，say $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$ ．
（3）（8 points）What is the joint distribution of（ $\hat{\beta}_{0}, \hat{\beta}_{1}$ ）？
（4）If，for given $x_{i}, Y_{i}, i=1,2, \ldots, n$ ，independently follows Bernoulli $\left(\mu_{i}, \mu_{i}\left(l-\mu_{i}\right)\right.$ ）， where

$$
\mu_{i}=\frac{e^{\beta_{0}+\beta_{1} x_{i}}}{1+e^{\beta_{0}+\beta_{1} x_{i}}},
$$

（a）（8 points）Show that（ $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Y}_{\mathrm{i}}, \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}$ ）is sufficient for $\left(\beta_{0}, \beta_{l}\right)$ ．
（b）（8 points）Find the likelihood equations．Show or argue that the MLEs of（ β_{0}, β_{l} ） are functions of the sufficient statistics（ $\left.\sum_{i=1}^{n} Y_{i}, \sum_{i=1}^{n} x_{i} Y_{i}\right)$ ．

2．（ $\mathbf{2 0}$ points）Let X and Y be two independent random variables coming from Poisson distributions with parameters $E(X)=\lambda_{1}, E(Y)=\lambda_{2}$ ，respectively．
（1）（10 points）Find the conditional distribution of $X \mid X+Y=m$ ．
（2）（10 points）Suppose we have two random samples $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{l}, Y_{2}, \ldots, Y_{n}$ coming from Poisson $\left(\lambda_{1}\right)$ and Poisson $\left(\lambda_{2}\right)$ ，respectively．We are interested in testing $\mathrm{H}_{0}: \lambda_{1} / \lambda_{2} \leq 1$ vs $\mathrm{H}_{1}: \lambda_{1} / \lambda_{2}>1$ ．Consider $X_{I}\left|X_{I}+Y_{I}=m_{l}, X_{2}\right| X_{2}+Y_{2}=m_{2}, \ldots, X_{n} \mid X_{n}+$ $Y_{n}=m_{n}$ ．Based on $X_{i} \mid X_{i}+Y_{i}=m_{i}, i=1,2, \ldots, n$ ，construct an（conditional）uniformly most power test with level α ．

3．（24 points）
（1）（6 points）Let X be a continuous random variable with cumulative distribution function F_{x} ．Show that $U=F_{x}(X)$ follows an uniform distribution，$U(0,1)$ ．
（2）（ 6 points）Show that $-2 \ln U$ follows a chi－square distribution with 2 degrees of freedom．
（3）（6 points）Let $T(X)$ be a test statistic（with some probability density function）in testing $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta>\theta_{0}$ ．The critical region for the test is determined by

$$
P(T(\boldsymbol{X})) \geq c)=\alpha
$$

系所組別：統計學系
考試科目：數理統計
※ 考生請注意：本試題不可使用計算機。 請於答案卷（卡）作答，於本試題紙上作答者，不予計分。
where α is the level of significance，c is some constant．Show that

$$
p \text {-value }=P(T(X) \geq t(x))
$$

follows an uniform distribution，where $t(x)$ is the observed value of $T(X)$ ．
（4）（6 points）Let $P_{1}, P_{2}, \ldots, P_{n}$ be the p－values obtained by n medical centers in testing $H_{0}: \theta=\theta_{0}$ vs $H_{l}: \theta>\theta_{0}$ ．It is known that all the medical centers follow the same protocol in collecting the data．How to merge the above n p－values into one quantity so that the test $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta>\theta_{0}$ can be performed more effectively？

4．（ $\mathbf{1 6}$ points）内政部警政署資料顯示，近幾年國内第三級毒品的施用人数急谑增加，且有年軧化的傾向。為了防止毒品流入校園，採自願性的觀點推廣校園尿液检測是個可行的措施。假設全國國，高中生的吸毒人口比例為 p ，有吸毒且被正確檢測為陽性反應的機率（敏感度，sensitivity）為 s ，没有吸毒且被正確檢測為陰性反應的機率（明確度，specificity）為 q 。
（1）（8 points）求一次檢測下呈現陽性反應，但事實上該生未吸毒的機率，即偽陽率（false positive rate）。在 $p=0.05, s=0.9, q=0.9$ 下，一次检測的偽陽率為何？
（2）：（8 points）在（a）中所得的偽陽率可能很高，降低偽陽率的一個方式為重複检驗。求检驗 2 次皆為陽性，事兾上並未吸毒的偽陽率。求在 $p=0.05, s=0.9, q=0.9$下的偽陽率。

