編號: 258

國立成功大學 105 學年度碩士班招生考試試題

系 所:統計學系 考試科目:數理統計

考試日期:0228, 節次:2

第1頁,共3頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- (1) Let X_1, \ldots, X_n be a random sample from the exponential distribution on (a, ∞) with scale parameter θ , where $\theta > 0$ and $a \in R$.
 - (a) (5%) Find the UMVUE of a when θ is known.
 - (b) (5%) Find the UMVUE of θ when a is known.
 - (c) (5%) Find the UMVUE of θ and a.
 - (d) (5%) Find the UMVUE of $P(X_1 \ge t)$ for a fixed t > a.
- (2) Let X be an observation from the distribution with the probability density function given by

$$f(x|\theta) = \frac{c}{2}e^{\theta x - |x|}, \quad -1 < \theta < 1.$$

- (a) (5%) Find the constant c in terms of θ .
- (b) (5%) Show that if $0 \le \alpha \le 0.5$, then $\alpha X + \beta$ is admissible for estimating E(X) under the squared error loss.
- (3) Suppose that X has the discrete probability mass function given by

$$p(x|\theta) = \begin{cases} \frac{\theta}{2}, & \text{if } x = -1, 1; \\ 1 - \theta, & x = 0, \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) (2%) What is the MLE of θ ?
- (b) (3%) Find the UMVUE of θ .
- (4) (5%) Let Y be a random variable and m be a median of Y. Show that, for any real numbers a and b such that $m \le a \le b$ or $m \ge a \ge b$, $E|Y-a| \le E|Y-b|$.
- (5) Suppose that X_1 and X_2 are two independent random variables from the uniform distribution U(-1,1). Let $Y_1 = X_1 + X_2$ and $Y_2 = X_1 X_2$.
 - (a) (5%) Find the joint probability density function of Y_1 and Y_2 .
 - (b) (5%) Find the marginal probability density function of Y_1 .
 - (c) (5%) Find the mean and variance of Y_1 given $Y_2 = 0$ if they exist.
- (6) Let X_1, \ldots, X_n be a random sample from a distribution with the probability density function as

$$f(x|\theta) = \begin{cases} \theta(1-x)^{\theta-1}, & \text{if } 0 < x < 1\\ 0, & \text{elsewhere.} \end{cases}$$

- (a) (2%) Find the form the uniformly most powerful test of $H_0: \theta = 1$ against $H_1: \theta > 1$.
- (b) (3%) Find the likelihood ratio test for testing $H_0: \theta = 1$ against $H_1: \theta \neq 1$.

編號: 258

國立成功大學 105 學年度碩士班招生考試試題

系 所:統計學系 考試科目:數理統計

考試日期:0228,節次:2

第2頁,共3頁

(7) Let $Y = (X_1, X_2)'$ have a bivariate normal distribution with mean μ and covariance matrix Σ given by

$$\mu = \left(\begin{array}{c} 5 \\ 10 \end{array} \right), \quad \Sigma = \left(\begin{array}{cc} 1 & 5\rho \\ 5\rho & 25 \end{array} \right).$$

Suppose that $\rho > 0$ and $P(6 < X_2 < 14 | X_1 = 5) = 0.68$. Note that P(Z < 1) = 0.84 when $Z \sim N(0, 1)$.

- (a) (5%) Please determine the value of ρ .
- (b) (5%) Let $U = X_1 + X_2$ and $V = X_1 X_2$. Please determine the distribution of random vector (U, V). Are U and V independent? Explain.
- (c) (5%) Find a matrix A and a real vector b such that

$$T = AX + b$$

follows a standard bivariate normal distribution with mean μ_T and covariance Σ_T given by

$$\mu_T = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \Sigma_T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

- (d) (5%) Let $W = (Y \mu)' \Sigma^{-1} (Y \mu)$. Find the mean and variance of W^2 .
- (8) Let X_1, \ldots, X_n be a random sample from the uniform distribution on the interval [0, 1] and let $R = X_{(n)} X_{(1)}$, where $X_{(i)}$ is the *i*th order statistic.
 - (a) (5%) Derive the probability density function of R.
 - (b) (5%) Find the limiting distribution of 2n(1-R).

編號: 258

國立成功大學 105 學年度碩士班招生考試試題

系 所:統計學系 考試科目:數理統計

考試日期:0228,節次:2

第3頁,共3頁

(9) Let $\{T_n\}, \{W_n\}, \{X_n\}, \{Y_n\}, \{Z_n\}$ be sequences of random variables. Assume $\{T_n\}$ is bounded in probability, $W_n \xrightarrow{D} W$, $X_n \xrightarrow{P} X$, $Y_n \xrightarrow{D} Y$, and $Z_n \xrightarrow{P} 2$. We denote $o_{\nu}(X_n)$ as

$$Y_n = o_p(X_n)$$
 if and only if $\frac{Y_n}{X_n} \xrightarrow{P} 0$, as $n \to \infty$.

Decide whether the following statement is **True(T)** or **False(F)**.

):
$$X_n \xrightarrow{D} X$$
.

(b) (1%) ():
$$X_n Y_n Z_n \xrightarrow{D} 2XY$$
.

(c) (1%) ():
$$\{X_n\}$$
 is bounded in probability.

(d) (1%) ():
$$\{T_n\}$$
 converges in distribution.

(e) (1%) ():
$$\frac{1}{Z_n} \xrightarrow{P} \frac{1}{2}$$
.

(f) (1%) ():
$$W_n Y_n \xrightarrow{D} WY$$
.

(g) (1%) ():
$$\sqrt{X_n} \xrightarrow{D} \sqrt{X}$$
.

(h) (1%) ():
$$Y_n^2 \xrightarrow{P} Y^2$$
.
(i) (1%) (): $o_p(T_n) \xrightarrow{P} 0$.

):
$$Z_n o_p(T_n) \xrightarrow{P} 0$$
.