編號: 260

國立成功大學 106 學年度碩士班招生考試試題

系 所:統計學系 考試科目:數理統計

考試日期:0214,節次:2

第1頁,共3頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

— True or False $(10 \times 2\% = 20\%)$

(For the following statements, please answer T if it is true and F otherwise.)

- 1. Both of random variables X and Y are normally distributed, then (X, Y) follows a bivariate normal distribution.
- 2. X is a continuous random variable, and $P(X \le s + t | X \le t) = P(X \le s)$, then X follows an exponential distribution.
- 3. X and Y are i.i.d. standard normal random variables, then E(X/Y) = 0.
- 4. As in 3., $E(X^2/Y^2)=0$
- 5. If an estimator is consistent, then it is unbiased and its variance converges to zero as the sample size n goes to infinity.
- 6. Two disjoint events are independent.
- 7. The summation of n independent exponential random variables is an exponential random variable.
- 8. If $(X_1, X_2)'$ is jointly distributed as a bivariate normal distribution, then the conditional distribution of $X_1|X_2$ has to be a normal one as well.
- 9. If a random variable X is nonnegative, then $E(X) \ge 0$.
- 10. Under a symmetric distribution, the sample mean and sample variance are asymptotically independent.

\sim Multiple Choice $(7 \times 5\% = 35\%)$

- 1. Which of the following statement(s) is/are true?
 - i. For any population model, there is a sufficient statistics.
 - ii. If a complete sufficient statistics exists, then it has to be minimal sufficient.
 - iii. For any population model, there is a minimal sufficient statistics.
 - (A) i. only (B) ii only (C) iii. Only (D) i. and ii. (E) i. and iii. (F) ii. and iii. (G) i., ii., and iii. (H) None
- 2. Which of the following statement(s) is/are true?

i.
$$X_n \xrightarrow{p} a$$
, $Y_n \xrightarrow{p} b$, then $X_n Y_n \xrightarrow{p} ab$

ii.
$$X_n \xrightarrow{p} a$$
, $Y_n \xrightarrow{d} Y$, then $X_n Y_n \xrightarrow{d} a Y$

iii.
$$X_n \xrightarrow{d} X$$
, $Y_n \xrightarrow{d} Y$, then $X_n Y_n \xrightarrow{d} XY$

(A) i. only (B) ii only (C) iii. Only (D) i. and ii. (E) i. and iii. (F) ii. and iii. (G) i., ii., and iii. (H) None

編號: 260

國立成功大學 106 學年度碩士班招生考試試題

系 所:統計學系 考試科目:數理統計

考試日期:0214,節次:2

第2頁,共3頁

- 3. (X,Y)' is uniformly distributed on $S_{(X,Y)}=\{(x,y); 0 \le x \le 1, 0 \le y \le 1, x+y \le 1\}$, then
 - i. The marginal distribution of $\, X \,$ is a uniform distribution.
 - ii. X|Y = y is a uniform distribution.
 - iii. $P(X^2 + Y^2 \le 0.5 | X < Y) = \pi/4$
 - (A) i. only (B) ii only (C) iii. Only (D) i. and ii. (E) i. and iii. (F) ii. and iii. (G) i., ii., and iii. (H) None
- 4. $X_n = (X_{1n}, X_{2n})'$ is a sequence of random vectors, which of the following statement(s) is(are) correct?

i. If
$$X_n \stackrel{d}{\rightarrow} X = (X_1, X_2)$$
, then $X_{1n} \stackrel{d}{\rightarrow} X_1$, $X_{2n} \stackrel{d}{\rightarrow} X_2$.

ii. If
$$X_n \stackrel{p}{\rightarrow} a = (a_1, a_2)$$
, then $X_{1n} \stackrel{p}{\rightarrow} a_1$, $X_{2n} \stackrel{p}{\rightarrow} a_2$.

iii. If
$$X_n \stackrel{d}{\rightarrow} X = (X_1, X_2)$$
, and $Y_n = X_{1n} + X_{2n}$, $Y = X_1 + X_2$, then $Y_n \stackrel{d}{\rightarrow} Y$.

- (A) i. only (B) ii only (C) iii. Only (D) i. and ii. (E) i. and iii. (F) ii. and iii. (G) i., ii., and iii. (H) None
- 5. Which of the following statement(s) is(are) correct?
 - i. If the maximum likelihood estimator is unbiased, then it is the best unbiased estimator.
 - ii. The most powerful test is a test with the lowest type I error rate under the same size $\, lpha . \,$
 - iii. Let $K_{\Phi}(\theta)$ be the power function of the testing procedure Φ , then the type II error rate of Φ is the value of $K_{\Phi}(\theta)$ when θ is true.
 - (A) i. only (B) ii only (C) iii. Only (D) i. and ii. (E) i. and iii. (F) ii. and iii. (G) i., ii., and iii. (H) None
- 6. Let $X_1, X_2, \dots, X_n, n > 1$ be the observations from a normal population with mean μ and variance σ^2 , further, let \bar{X} and S^2 be the sample mean and sample variance, respectively, then
 - i. \overline{X} is the UMVUE of μ .
 - ii. S^2 is the UMVUE of σ^2 .
 - iii. $\bar{X}S^2$ is the UMVUE of $\mu\sigma^2$.
 - (A) i. only (B) ii only (C) iii. Only (D) i. and ii. (E) i. and iii. (F) ii. and iii. (G) i., ii., and iii. (H) None
- 7. Which of the following statement(s) is/are correct?
 - i. If the UMVUE exists, then it is a function of the sufficient statistics.
 - ii. The independence between events A and B cannot imply the independence between A^c and B^c .
 - iii. For a fixed sample size n, The UMVUE is an efficient estimator.
 - (A) i. only (B) ii only (C) iii. Only (D) i. and ii. (E) i. and iii. (F) ii. and iii. (G) i., ii., and iii. (H) None

編號: 260

國立成功大學 106 學年度碩士班招生考試試題

系 所:統計學系 考試科目:數理統計

考試日期:0214,節次:2

第3頁,共3頁

三、 Problems (45%)

1. (15%) X and Y are two k-dimensional random vectors such that $X|Y\sim N_k(Y,\Sigma)$, and $Y\sim N_k(\mu,\Lambda)$, μ is a k-dimensional constant vector and both of Σ and Λ are $k\times k$ covariance matrices. What is the marginal distribution of X?

2. (15%) Prove the subadditivity of the probability function P(\cdot) defined on (Ω, \mathcal{F}) , that is, let A_{i} , i=1,... be the subsets of Ω , then

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} P(A_i)$$

3. (15%) Usually the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ of the random sample $X_1, X_2, ... X_n$ is a reasonable and good estimator for the population mean. Nevertheless, the sample mean can perform poorly from time to time. For example, the sample mean under the model of a uniform distribution $\mathrm{Uni}(0,\theta), \theta > 0$ is not such a good choice to estimate the population mean. Please find an unbiased estimator under this uniformly distributed model which is better than \bar{X}