國立成功大學 114學年度碩士班招生考試試題

編 號: 166

系 所:統計學系

科 目: 數理統計

日 期: 0211

節 次:第2節

注 意: 1.不可使用計算機

2.請於答案卷(卡)作答,於 試題上作答,不予計分。

- (15%, 5% for each) Consider the experiment of tossing two fair dice. Define
 X = sum of the two dice and Y = |difference of the two dice|.
 - (a) Let $A = \{(x, y): X = 7 \text{ and } Y \le 4\}$. Find $P((X, Y) \in A)$.
 - (b) Compute the expectation of 3X + 2Y, that is, E(3X + 2Y).
 - (c) Compute the expectation of XY, that is, E(XY).
- 2. (20%, 10% for each) Let $X_1, X_2, ..., X_n$ be an independent and identically distributed (iid) sample from Poisson(λ), where λ is an unknown parameter.
 - (a) Find a level α likelihood ratio test (LRT) for $H_0: \lambda = \lambda_0$ versus $H_1: \lambda \neq \lambda_0$.
 - (b) Assume that a prior $\lambda \sim \text{Gamma}(a, b)$. Construct a $100(1-\alpha)\%$ credible set for λ .
- 3. For $W = \{(X_i, Y_i): i = 1, ..., n\}$. Consider the model $Y_i = \beta X_i + \epsilon_i$, for i = 1, ..., n, where $\epsilon_1, ..., \epsilon_n$ are independent and identically distributed (iid) $\mathcal{N}(0, \sigma^2)$.
 - (a) (10%) Assume that $X_1, ..., X_n$ are fixed constants, find the maximum likelihood estimators (MLE) for β and σ^2 .
 - (b) (5%) Find the distribution of the MLE of β .
 - (c) (10%) If, now, assume that $X_1, ..., X_n$ are iid $\mathcal{N}(\mu_x, \sigma_x^2)$ random variables and independent of $\epsilon_1, ..., \epsilon_n$. Find the MLE for β , σ^2 , μ_x and σ_x^2 .
- 4. (40%, 10% for each) Let $X \sim \mathcal{N}(\mu_1, \sigma^2)$ and $Y \sim \mathcal{N}(\mu_2, \sigma^2)$, where X and Y are independent.
 - (a) Define $L_1 = a_1X + a_2Y$ and $L_2 = a_3X + a_4Y$. Characterize the collection of all real constants a_1 , a_2 , a_3 , a_4 such that the random variables L_1 and L_2 are independent.
 - (b) Are the random variables

$$V = \frac{(X+Y)}{\sqrt{2}\sigma}$$
 and $W = \frac{(X-Y)}{\sqrt{2}\sigma}$

independent? Why?

- (c) Under the case $\mu_1 = \mu_2$, determine the marginal distributions of V and W.
- (d) Under the case $\mu_1 = \mu_2$, obtain the conditional distribution of

$$P = \frac{XY}{\sigma^2}$$
 given that $T = \frac{(X+Y)^2}{2\sigma^2} = t$.