國立成功大學80學年度統計所考試(機率論 試題)其具具

Probability Theory

- I. (25 points) Multiple choice. Choose the mose appropriate answer for the following questions.
- (a). Assume that X and Y are independent random variables, each with geometric didtribution $P(X = n) = pq^{n-1}$, $P(Y = n) = \alpha\beta^{n-1}$, n = 1,2,... with q = 1 p, $\beta = 1 \alpha$. Then P(X=Y) is
 - $(1). \sum_{n=1}^{\infty} (p\beta)^{n-1} q\alpha \quad (2). \sum_{n=1}^{\infty} (q\alpha)^{n-1} p\beta \qquad (3). \frac{p\alpha}{(1\cdot q\beta)} \qquad (4). \text{ None of the above.}$
- (b). Random variables X and Y have joint density that is constant on the shaded area below:

Then the marginal density of Y looks like

(3). f(y)

(4). None of the above

(c). Assume that X, Y, Z are independent random variables, with probability distribution functions

$$F(t) = P(X \le t),$$

$$G(t) = P(Y \le t)$$
.

$$H(t) = P(Z \le t)$$

Let $U = min\{X,Y,Z\}$. Then the probability distribution function of U is

(1).
$$Min\{F(t), G(t), H(t)\},\$$

(2).
$$F(t) \cdot G(t) \cdot H(t)$$

(3).
$$1 - (1 - F(t))(1 - G(t))(1 - H(t))$$
,

(4). None of the above.

國立成功大學80學年度統計所考試(機, 靠論 試題) 第乙頁

- (d). In comparing $P(A \cap B)$ and P(B)
 - (1). We have $P(A \cap B) = P(B)$ only if $A \cap B = \phi$,
 - (2). We always have $P_1(A \cap B) < P(B)$
 - (3). It may happen that $P(A \cap B) > P(B)$,
 - (4). We have $P(A \cap B) = P(B)$ if $A \supset B$.
- (e). The distribution of the sum of two independent variables drawn from the same uniform distribution is:
 - (1). Uniform, (2). Triangular,
- (3). Normal, (4). hypergeometric.

II. (25 points) Let (X,Y) be a bivariate random variable with the following joint probability distribution:

	V I						
!	X	2	_√ <u>2</u> _	00	<u>-√2</u>	-2	
	2	0	0	1/8	0	0	
1	√2	0	1/8	0	1/8	0	į
İ	0	1/8	0	0	0	1/8	!
1	-√2 i	0	1/8	. 0	1/8	0	
I	-2	00	0	1/8	0	0	

- (a). Find E(X) and E(Y).
- (b). Find Var(X) and Var(Y).(c). Show that the correlation coefficient of X and Y is 0.
- (d). Note that $P(X^2 + Y^2 = 4) = 1$, but in (c) we have $\rho_{xy} = 0$. Why? (e). If we only know the marginal distributions of X and Y, can we uniquely determine the distribution of (X,Y)? Use the above joint probability distribution to support your argument.
- III. Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$. Let $X = [X_1, X_2, ..., X_n]^T$, then the mean vector and variance-covariance matrix of X are $E(X) = \mu$, $Cov(X) = \sigma^2 I$, respectively, where $\mu = [\mu, \mu, ..., \mu]^T$ is an $n \times 1$ column vector, I is an $n \times n$ identity matrix. (25 points)
- (a). What is the distribution of $X_i \bar{X}$? (9 points)
- (b). It is well known that if a and b are two $n \times 1$ column vectors, then $Cov(a^TX, b^TX) = a^TCov(X)b$. Use this fact and normal theory to prove that $X_i - \bar{X}$ and \bar{X} are statistically independent. (9 points)

國立成功大學 80 學年度 統計的考試(粮 率 論 試題) 第3頁

(c). Cite one theorem (for example, from the book of Hogg & Craig) to argue that

 $\sum_{i=1}^{n} [X_i - \bar{X}]^2 / n \text{ and } \bar{X} \text{ are statistically independent. (7 points)}$

IV. Let X be a continuous random variable with probability density function $f_X(x)$. Define

$$U=F(X)=\int_{-\infty}^X f_X(y)\mathrm{d}y.$$

- (a). Show that U is uniformly distributed over the interval (0, 1). (10 points)
- (b). Suppose we take a random sample $X_1, X_2, ..., X_n$ from $f_X(x)$ and let

 $\lambda(X_1, X_2, ..., X_n) = \prod_{i=1}^n F(X_i)$. Find the distribution of $-2\ln\lambda(X_1, X_2, ..., X_n)$, where $\ln X$ is the natural logarithm of X. (5 points)

- (c). Find E[$-2\ln\lambda(X_1,X_2,...,X_n)$] and Var($-2\ln\lambda(X_1,X_2,...,X_n)$). (5 points)
- (d). What is the limiting distribution of $-\ln \lambda(X_1, X_2, ..., X_n)/\sqrt{n} \sqrt{n}$? (5 points)