6 學年度 國立成功大學 碩士班招生老試

統計

頁

注意:未寫明演算過程者不給分!

1. Suppose that the function f(x) is such that f'(x) and f''(x) are continuous in a neighborhood of the regin and satisfies f(0) = 0. Show that

$$\lim_{x \to 0} \frac{d}{dx} \left[\frac{f(x)}{x} \right] = \frac{1}{2} f''(0) \tag{5 3}$$

- 2. Suppose that $g: R \to R$ and that |g'(x)| < M for all $x \in R$, where M is a positive constant. Define f(x) = x + cg(x), where c is a positive constant. Show that it is possible (6分) to choose c small enough so that f is a one-to-one function.
- 3. Suppose that f(x) is continuous on $[0,\infty)$, f''(x) exists on $(0,\infty)$. Show that g(x)is monotone increasing on on $(0, \infty)$ where g(x) = f(x)/x.
 - 4. Suppose that we have the sequence $\{a_n\}_{n=1}^{\infty}$, where $a_1 = 1$ and

$$a_{n+1} = \frac{a_n(3b + a_n^2)}{3a_n^2 + b}, \qquad b > 0, n = 1, 2, \dots$$

(10分) Show that the sequence converges and find its limit.

5. Consider the improper integral $B(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$. Show that

$$(a)B(m,n) = 2\int_0^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta \qquad (4 \Re)$$

$$(b)B(m,n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$$
 (4 \(\frac{1}{2}\))

$$(c)B(m,n) = \int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx \tag{4.5}$$

Find

(a) $\int \int_D (x^2 + y^3) dx dy$, where D is the region in the first quadrant bounded by $y = x^2$ (5分) and $x = y^4$

(b) $\int \int_D xy^2 dx dy$, where D is bounded by the four parabolas, $y^2 = x$, $y^2 = 3x$, $x^2 = y$ and $x^2 = 4y$.

- 7. Let **A** and **B** be $n \times n$ idempotent matrices. Show that **A B** is idempotent if and only if AB = BA = B. (10 \Re)
- 8. The matrices **A** and **B** are systematic and positive semidefinite of order $n \times n$ such that AB = BA. Show that AB is positive semidefinite. (10 \Re)
 - 9. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation defined by L(X) = AX, X in \mathbb{R}^n , where A is an $m \times n$ matrix. Prove that
 - (a) L is one-to-one if rank A = n. (5分)
 - (b) L is onto if rank A = m. (5 \Re)
 - 10. If **A** be an $n \times n$ systematic matrix, and let λ be an eigenvalue of **A** of multiplicity k, then $\mathbf{A} \lambda \mathbf{I}_n$ has rank n k. (10 \mathbf{A})
 - 11. (a) Show that $tr(\mathbf{A}^T \mathbf{A}) = 0$ if and only if $\mathbf{A} = \mathbf{0}$. (5 %)
 - (b) If **A** is a systematic $n \times n$ matrix, and **B** is an $n \times n$ skew-systematic matrix, then show that $tr(\mathbf{AB}) = 0$. (5 \Re)