89 學年度 國立成功大學 統計 系 機 率 論 試題 共 2 頁 所 機 率 論 試題 第 1 頁

I. (10 points) It is well-known by central limit theorem that for *i.i.d.* random sample $X_i, X_j, ..., X_n$, with $E(X_1^2) < \infty$, the random variable $\sqrt{n}(\overline{X} - E(X_1))$ converges in distribution to N(0, Var(X_1)). Suppose we have $X_i, X_j, ..., X_n$, *i.i.d.* from Cauchy(0, 1), i.e.,

$$f(x) = \frac{1}{\pi(1+x^2)}, \quad x \in R,$$

It is known that the characteristic function of a Cauchy random variable is $\phi(t) = E[e^{ux}] = e^{-t/t}.$ Prove that the central limit theorem can not by applied to

Cauchy by showing that $\overline{X} = \sum_{i=1}^{n} X_i / n$ has the same distribution as X_i .

- II. (30 points) Consider the following two sampling experiments:
 - a. Conduct n i.i.d. Bernoulli trials, say, $X_1, X_2, ..., X_n$ with probability of success equal to $E(X_i) = p$, 0 .
 - b. The experiment is continued until a specified number of successes have been obtained. (Each Bernoulli trial is i.i.d. with probability of success equal to p, too.)

 Let Y, denote the number of trials after the (i-1)th success up to but not including the ith success.
 - (1). Find the joint distributions of $(X_p, X_p, ..., X_n)$ and $(Y_p, Y_2, ..., Y_m)$, respectively, and then find the sufficient statistics for the experiments (a) and (b).
 - (2). Consider the estimation of p and 1/p. Find the UMVU estimators of p for experiment (a) and of 1/p for the experiment (b), respectively.
 - (3). Find the Cramer-Rao lower bound (CRLB) for *p* in (a) and 1/*p* in (b). Do the variances of the UMVU estimators coincide with the CRLBs?

89 學年度 國立成功大學 統計 系 機率論 試題 第三頁

- III. (60 points) Let (Y, X) be a bivariate random vector with P(Y=1)=1-P(Y=0)=p, and X|Y=i follows $N(\mu_0, \sigma^2)$, $i=0, 1, \mu_0 > \mu_0, \sigma^2$ known.
 - (1). Find P(Y=i|X=x), i=0,1.
 - (2). Suppose μ₀, μ₁ and p are known, and an observation X=x is given.
 We want to classify x to one of the two groups Y=1 or 0 based on which of the posterior probability P(Y=i|X=x), i=0, 1, is larger. Show that the decision rule can be written as a linear function of x.
 - (3). For this (3) only. Let $\mu_1=2$, $\mu_0=1$, $\sigma^2=1$, p=1/2. Find the error probabilities

P(classified as $Y = i \mid X$ is from Y = 1 - i), i = 1, 0.

Suppose now we have the classical setting, i.e.,

$$f_i(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma^2})}, \quad i = 0,1, \quad x \in R,$$

where μ , σ , as before, are known, and we want to determine which population x is coming form.

- (4). Find a most powerful level 0.05 test for H_0 : f_0 vs H_1 : f_1 .
- (5). Is there any connection between the rules you found in (2) and (4)? Discuss.
- (6). We say (Y, X) has a logistic regression model if the conditional expectation E(Y|X=x) has the following form

$$E(Y|X=x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)},$$
 (*)

where Y is binary with P(Y=1)=p, $0 \le p \le 1$. Suppose X given Y=i has pdf

$$f(x|Y=i)=e^{x\theta+d(\theta)}h(x), i=0,1.$$

Show that E(Y|X=x) has the form of (*) and hence deduce that the rule in (2) falls into the framework of logistic regression model.