注意:未寫明演算過程者不予計分。

- (10%) (一) State which of the following are true and which are false. If false, please correct it.(若答案爲錯,則請更正)
 - (1) In polar coordinate system, the slope of the equation $r = f(\theta)$ at a point (r, θ) on the graph is $f'(\theta)$
 - (2) If $\{a_n\}$ is a monotone increasing sequence of positive numbers, then the sequence $\{a_n\}$ converges.
 - (3) If f is continuous at (x_0, y_0) , and $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ both exist, then f is differentiable at (x_0, y_0) .
 - (4) If $\nabla f(x_0, y_0) = 0$, then f has either a local maximum or a local minimum at (x_0, y_0) .
 - (5) If f is defined on the rectangular region $R = \{(x, y) : a \le x \le b, c \le y \le d\}$, then $\iint_R f(x, y) dA = \int_a^b \int_c^d f(x, y) dy dx.$

(10%)(二)

- a) Find the area between the circles r=1 and $r=2\cos\theta$.
- b) Evaluate the integral $\iint_R x \sqrt{x^2 + y^2} dA$ where R is the disk with its center at the origin and radius 1.
- (10%) (\equiv) Evaluate $\iint_R (9x-3y) dA$ where R is the region bounded by 3x-y=1, 3x-y=3, x+y=1, x+y=2.

(10%)(四)

- a) Suppose that $\sum a_n$ and $\sum b_n$ are series of positive terms. Prove that if $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ also converges.
- b) Determine convergence or divergence of the following series.

(i)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n}$$

(ii)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\ln(n+1)}$$

(10%)(五)

- a) Let $f(x) = xe^x$. Make use of power series and f'(1) to find the sum of the series $\sum_{n=0}^{\infty} \frac{n+1}{n!}$.
- b) Prove that $\lim_{x\to 0} (1+x)^{1/x} = e$.

- (10%) (\nearrow) Let R be the space of real numbers. Define $T:C[a,b]\to R$ by $T(f)=\int_a^b f(x)\,dx$, where C[a,b] is the set of functions continuous on [a,b]. Using element properties of integrals, prove that T is a linear transformation.
- (10%) (\pm) Produce a matrix *P* such that $P^{-1}AP$ is diagonal, where $A = \begin{bmatrix} 5 & -4 & 4 \\ 12 & -11 & 12 \\ 4 & -4 & 5 \end{bmatrix}$.

(10%)(八)

- (a) Let λ_1 and λ_2 be distinct eigenvalues of the real, symmetric matrix A. Suppose that ν_1 and ν_2 are associated eigenvectors. Prove that ν_1 and ν_2 are orthogonal.
- (b) Let $A = \begin{bmatrix} 3 & 0 & -2 \\ 0 & 2 & 0 \\ -2 & 0 & 0 \end{bmatrix}$. Use the eigenvectors of A to construct an orthogonal matrix P i.e. $P^{-1} = P'$.

(10%) (九) A real, symmetric matrix is positive definite if every eigenvalue is positive.

(a) Let A be a real symmetric matrix. Prove that A is positive definite if and only if there is a nonsingular matrix Q such that A = Q'Q.

(b) Let
$$A = \begin{bmatrix} 3 & 0 & -2 \\ 0 & 2 & 0 \\ -2 & 0 & 0 \end{bmatrix}$$
. Find a nonsingular matrix Q such that $A = Q^tQ$.

(10%)(十)

(a) Find the canonical form of $x_1^2 + 2x_2^2 + 2\sqrt{2}x_1x_3$.

transform $x_1^2 + 2x_2^2 + 2\sqrt{2}x_1x_3$ into its canonical form.

(b) Let $X = (x_1, x_2, x_3)^t$, $Y = (y_1, y_2, y_3)^t$. Find a matrix P such that X = PY.