9D 學年度 國立成功大學 統計 新 統計學 試題 共 2 頁 所 統計學 試題 第 1 頁

- I. True or False (2 points each/Total 20 points) Write 0 for True and X for False.
 - 1. The expectation of an exponential distribution is always positive.
 - 2. The width of 95% confidence interval for the variance of a normal distribution does not depend on the sample size.
 - 3. The sum of residuals of the fitted model $\hat{y} = \hat{\beta}x$ is always equal to zero.
 - 4. The sign of β in linear model $y = \alpha + \beta x + \epsilon$ can be determined from the sign of the correlation coefficient of y and x.
 - 5. We have $\Pr(X=x) = \Pr(X=n-x), x=0,1,\ldots,n$, for $X \sim \text{Binomial}(n,p=0.5)$.
 - 6. For $X \sim \text{Normal}(\mu, \sigma^2)$, we have $\Pr(X \leq -1) = \Pr(X \geq 1)$ since the shape of normal distribution is symmetric.
 - 7. A hypothesis being rejected at 5% significance level implies that it will also be rejected at 10% significance level.
 - 8. For a normally distributed data (assuming the variance known), the width of 95% confidence interval for the mean is determined by the sample size.
 - 9. For the fitted regression model $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$, we have $Cov(\hat{\beta}_0, \hat{\beta}_1) = 0$.
 - 10. The standard deviation is always smaller than the mean of a normal distribution.
- II. Fill-in Blanks (2 points each blank/Total 40 points) Specify the number of each blank.
 - For random sample x_1, x_2, \ldots, x_n from Poisson(λ), λ is the rate of occurrence, $\overline{x} = \sum_{i=1}^n x_i/n$,
 - $-E(\overline{x})=1$, $Var(\overline{x})=2$;
 - for testing NH: $\lambda = 5$ versus AH: $\lambda \neq 5$, with large n, the distribution of test statistic 3 is approximately normal under NH.
 - For random sample x_1, x_2, \ldots, x_n from Normal (μ, σ^2) , $\overline{x} = \sum_{i=1}^n x_i/n$ and $s^2 = \sum_{i=1}^n (x_i \overline{x})^2/(n-1)$,
 - for testing NH: $\sigma^2 = 3$ versus AH: $\sigma^2 \neq 3$, the test statistic 4 follows a χ^2_{n-1} -distribution under NH, and 95% confidence interval for σ^2 is (5, 6); (Carefully in using the notation of the form $\chi^2_{df,1-\alpha}$ for the $100(1-\alpha)$ th percentile of χ^2_{df} -distribution.)
 - $-E(s^2) = \boxed{7}$ and $\text{Var}(s^2) = \boxed{8}$; (Noted that $(n-1)s^2/\sigma^2 \sim \chi^2_{n-1}$, and the expectation and variance of a χ^2_{df} -distribution are df and $2 \times df$, respectively.)
 - applying Taylor's expansion, $s \approx \sigma + (s^2 \sigma^2)/(2\sigma)$, we have $E(s) \approx 9$ and $Var(s) \approx 10$;

- the 100pth percentile $x_p = \boxed{11}$; (need to express in terms of μ, σ and z_p where $\Phi(z_p) = p$, $\Phi(\cdot)$ is the distribution function of standard normal.)
- and x_p can be estimated by $\hat{x}_p = \boxed{12}$, we have $E(\hat{x}_p) \approx \boxed{13}$ and $\mathrm{Var}(\hat{x}_p) \approx \boxed{14}$;
- with available data of size n=16, $\overline{x}=11$, $s^2=0.25$, then we can estimate the 95th percentile $x_{0.95}$ by $\hat{x}_{0.95}=\overline{(15)}$, along with standard error $\sqrt{\widehat{\text{Var}}(\hat{x}_{0.95})}\approx\overline{(16)}$. (Noted that $z_{0.95}=1.645$.)
- For random sample x_1, x_2, \ldots, x_{25} from Normal $(\mu_x, 3^2)$, and, independently, y_1, y_2, \ldots, y_9 from Normal $(\mu_y, 2^2)$,
 - $-3\overline{x}-2\overline{y}\sim \text{Normal}(17, 18);$
 - for testing NH: $\mu_x \mu_y = 5$ versus AH: $\mu_x \mu_y \neq 5$, the test statistic 19 follows 20 distribution under NH.

III. Derivation and Calculation (5 points each/Total 40 points):

- For random variable X, with $E(X) = \mu$ and $Var(X) = \sigma^2$, calculate $Pr(|X \mu| \le 2\sigma)$ for
 - (a) Distribution is Exponential($\theta = 4$), where θ is the mean and the distribution function of Exponential(θ) is $F(x;\theta) = 1 \exp(-x/\theta)$.
 - (b) Distribution is Normal(17, 6²).
 (Noted that 2 is the 97.72th percentile of standard normal distribution.)
- For random sample $y_i \sim \operatorname{Binomial}(m_i, p), \ i = 1, 2, \ldots, n,$
 - (c) Derive the maximum likelihood estimator \hat{p}_{MLE} of p.
 - (d) Calculate $Var(\hat{p}_{MLE})$.
- For response variable $y_i \sim \text{Exponential}(\theta_i)$, $\theta_i = E(y_i) = \beta x_i$, where x_i is explanatory variable, (i=1, 2, ..., n)
 - (e) Derive the (ordinary) least squares estimator $\hat{\beta}_{\text{\tiny LSE}}$ of β .
 - (f) Calculate $Var(\hat{\beta}_{LSE})$.
 - (g) Derive the maximum likelihood estimator $\hat{\beta}_{\text{MLE}}$ of β .
 - (h) Calculate $Var(\hat{\beta}_{MLE})$.

Noted that the density function of Exponential(θ) is $f(x;\theta) = \exp(-x/\theta)/\theta$.