數學

1. Evaluate the given integral. (20%)

(a)
$$\int_0^\infty \sqrt{x}e^{-3x}dx$$

(c)
$$\int_0^{\sqrt{3}/2} \sin^{-1}xdx$$

(b)
$$\int_0^\pi \frac{\cot x}{\ln \sin x} dx$$

(d)
$$\int_{-\pi}^{\pi} \sin 3x \cos 4x dx$$

2. Find the derivative, if exists. (10%)

(a)
$$y = \tan^{-1}(\sinh x)$$

(b)
$$f(x) = \int_{\ln x}^{e^{e^x}} \ln t \ dt$$

3. Determine whether the given series converges absolutely, converges conditionally, or diverges. (10%)

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{n^n}$$

(b)
$$\sum_{n=1}^{\infty} ne^{-n}\sin n^2$$

4. Find the sum of the given series, if converges.(10%)

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$

5. Evaluate the integral $\int \int_R (x+y)e^{x^2-y^2}dA$ where R is the region bounded by $x^2-y^2=-1, x+y=2, x^2-y^2=1$ and x+y=1. (10%)

6. State(with a brief explanation) whether the following statements are true or false. (10%)

(a) $\{(1,0,1),(2,1,5)\}$ is a basis for the subspace of vectors in \mathbb{R}^3 of the form (a,b,a+3b).

(b) There are three linearly independent vectors in the R^2

(c) Any set of three vectors in R^3 that are linearly independent span the space.

(d) Any two nonzero vectors in \mathbb{R}^2 that do not form a basis are collinear.

(e) The condition that a subset of a vector space contains the zero vector is a necessary and sufficient condition for the subset to be a subspace.

7. Consider the vector v = (1, 3, -1) in \mathbb{R}^3 . Let W be the subspace of \mathbb{R}^3 consisting the vectors of the form (a, b, a - 2b). Decompose v into the sum of a vector that lies in W and a vector orthogonal to W. (10%)

8. Suppose the product of A and B is the zero matrix: AB = 0. then the __(1)_ space of A contains the __(2)_ space of B. Also the __(3)_ space of B contains the __(4)_ space of A. Fill in those blank words (1)(2)(3)(4). (10%)

9. (a) If A is similar to B, show that e^A is similar to e^B . First define "similar" and e^A .

(b) If A has 3 eigenvalues $\lambda = 0, 2, 4$, find the eigenvalues of e^A . Then using part (a) explain that determinant of $e^A = e^{trace}$ of A. (10%)