編號: 七 362 系所:統計學系

科目:數學

本試題是否可以使用計算機: □可使用 一不可使用 (請命題老師勾選)

Please write down all your work.

- 1. Let $f(x) = e^{-1/x^2}$, $x \neq 0$ and f(0) = 0. Prove that f is twice differentiable at 0. (10%)
- 2. Find the derivative dy/dx, if exists. (15%)

(a)
$$y = \ln|1 - sec^2x|$$
 (b) $x = \sin^{-1}xy$ (c) $y = |\sin x|^{\tan x}$

(b)
$$x = \sin^{-1} xy$$

(c)
$$y = |\sin x|^{\tan x}$$

3. Find the following limit, if exists. (15%)

(a)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n} \sin \frac{(k-1)t}{n}$$
 (b) $\lim_{n \to \infty} \sum_{k=1}^{n} (-1)^k \frac{1}{k}$ (c) $\lim_{n \to \infty} \sum_{k=1}^{n} k \sin \frac{1}{k}$

(b)
$$\lim_{n\to\infty} \sum_{k=1}^{n} (-1)^k \frac{1}{k}$$

(c)
$$\lim_{n\to\infty} \sum_{k=1}^{n} k \sin \frac{1}{k}$$

4. Find the following integral $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$. (10%)

Hint: Use $x = \pi - y$.

- 5. Show that $tan^{-1}x = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2k+1}$ for $|x| \le 1$. Then find out the value of (10%) $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots$
- 6. The region R is bounded by $x^2 + xy + y^2 \le 1$. Prove that (10%)

$$\int \int_{R} e^{-(x^{2}+xy+y^{2})} dx dy = \frac{2\pi}{\sqrt{3}} (e-1).$$

Hint: Let $x = u \cos \alpha - v \sin \alpha$, $y = u \sin \alpha + v \cos \alpha$ for some α , then let $u = a\rho \cos \phi$, $v = b\rho \sin \phi$ for some a and b.

(背面仍有題目.請繼續作答)

編號: 362 系所:統計學系

科目:數學

本試題是否可以使用計算機: □可使用 , □不可使用 (請命題老師勾選)

- 7. Let $W = \text{span } \{(1,0,1),(0,1,0)\}$ in \mathbb{R}^3 . (10%)
 - (a) Find a basis for W^{\perp} .
 - (b) Show that vectors (1,0,1), (0,1,0) and the basis for W^{\perp} from part (a) form a basis for \mathbb{R}^3 .
 - (c) Write the vector $\mathbf{v} = (1, 2, 3)$ as $\mathbf{w} + \mathbf{u}$ with \mathbf{w} in W and \mathbf{u} in W^{\perp} .
- 8. Answer each of the following as true (T) or false (F). Justify your answer. (20%)
 - (a) A diagonal matrix is nonsingular if and only if none of the entries on its main diagonal are zero.
 - (b) Let $L: \mathbb{R}^6 \to \mathbb{R}^{10}$ be a linear transformation defined by $L(\mathbf{x}) = A\mathbf{x}$ for \mathbf{x} in \mathbb{R}^6 . If dim(range L) =3, then dim(Ker L)=7.
 - (c) The columns of a 5×8 matrix whose rank is 5 form a linearly dependent set.
 - (d) If A is an $n \times n$ matrix that is row equivalent to I_n , then A is singular.
 - (e) If A is an 3×3 matrix and |A| = 3, then $|\frac{1}{2}A^{-1}| = \frac{8}{3}$.
 - (f) The linear transformation $L: P_2 \to P_2$ defined by $L(at^2 + bt + c) = 2at + b$ is one-to-one.
 - (g) If A is a singular matrix, then A^2 is singular.
 - (h) det(ABC) = det(BAC)
 - (i) If A is an $n \times n$ matrix such that $A^2 = O$, then A = O.
 - (j) A diagonalizable $n \times n$ matrix must always have n distinct eigenvalues.