(10%)

(10%)

(20%)

(10%)

編號:

系所:統計學系

本試題是否可以使用計算機: □可使用 , · □ 不可使用 (請命題老師勾選)

Please write down all your work.

1. Find the following indefinite integrals.

(a)
$$\int (2x^2 - x) \tan^{-1} x \ dx$$
 (b) $\int \frac{x}{\sqrt{1 - 2x - x^2}} \ dx$

(b)
$$\int \frac{x}{\sqrt{1-2x-x^2}} dx$$

2. Determine the following integrals converge or diverge.

(a)
$$\int_3^\infty \frac{(x-2)\ln x}{x^2} \ dx$$

(b)
$$\int_0^\infty \frac{(x^2 - 4x + 7)}{(x^2 + 6)^2} dx$$

3. Find the following limits.

(a)
$$\lim_{x \to 0} \frac{\sin(x^4) - x^4 \cos(x^4)}{x^4 (e^{2x^4} - 1 - 2x^4)}$$
 (b) $\lim_{x \to -\infty} \sqrt{x^2 + x} + x$

(b)
$$\lim_{x \to -\infty} \sqrt{x^2 + x}$$

(c)
$$\lim_{n \to \infty} \int_0^{2\pi} \frac{\sin nx}{x^2 + n^2} dx$$

(d)
$$\lim_{x\to 0} \frac{\int_0^{x^2} \sin t dt}{x^4}$$

4. Find the exact value of the following series.

(a)
$$\sum_{n=2}^{\infty} \frac{n(n-1)}{3^n}$$

(b)
$$1 - \frac{1}{2} + \frac{1}{4 \cdot 2!} - \frac{1}{8 \cdot 3!} + \frac{1}{16 \cdot 4!} - \cdots$$

5. Prove that for 0 < x < 1,

$$\sqrt{\frac{1-x}{1+x}} < \frac{\ln(1+x)}{\sin^{-1}x} < 1.$$
 (10%)

6. Evaluate

$$(10\%)$$

$$\int_0^1 \int_{-\sqrt{3-3y^2}}^{\sqrt{3-3y^2}} e^{-x^2-3y^2} \ dxdy.$$

(背面仍有題目.請繼續作签)

國立成功大學九十六學年度碩士班招生考試試題 共 2頁,第2頁

編號: 366 系所:統計學系 科目:數學

本試題是否可以使用計算機: □可使用 , ☑不可使用 (請命題老師勾選)

7. Suppose q_1, q_2, q_3, q_4 are orthonormal vectors in R^4 . Let $A = [q_1 \ q_2 \ q_3 \ q_4]$, $B = [q_1 + q_2 \ q_2 + q_3 \ q_3 + q_4 \ q_4 + q_1]$ and $C = [q_2 \ q_3 \ q_4 \ q_1]$. Find all possible values for the 4 by 4 determinants $\det A$, $\det B$, and $\det A \times \det C$. (10%)

- 8. Suppose A is a 5 by 3 matrix and Ax is never zero (except when x is the zero vector).
 - (a) What can you say about the column of A?
 - (b) Show that $A^T A$ is invertible.
 - (c) Show that $B = (A^T A)^{-1} A^T$ is a one-sided inversive of A, but not a 2-sided inverse of A. (10%)
- 9. If A is 3 by 3 symmetric positive definite, then $Aq_i = \lambda_i q_i$ with eigenvalues λ_i and orthonormal einenvectors q_i . Suppose $x = c_1 q_1 + c_2 q_2 + c_3 q_3$. Assume $\lambda_1 \leq \lambda_2 \leq \lambda_3$. What c's will make the ratio $x^T Ax/x^T x$ as large as possible? What is the maximum of the ratio $x^T Ax/x^T x$? (10%)