編號:

294

國立成功大學九十七學年度碩士班招生考試試題

共 2 頁 第] 頁

系所:統計學系

(請命題老師勾選)

考試日期:0302,節次:

Please write down all your work.

1. Find the following limit, if exists.

(10%)

(a)
$$\lim_{x\to 0}\cos\left(\frac{1-|\cos x|}{2x}\right)$$

(b)
$$\lim_{n \to \infty} \sum_{k=0}^{n} (-1)^k \frac{1}{2k+1}$$

2. Find the following derivatives dy/dx, if exists.

(20%)

(a)
$$y = (\ln x)^{\ln x}$$
, $x = e^2$

(b)
$$\sqrt{x} = \cos^{-1}(xy), x = \frac{\pi^2}{4}$$

(c)
$$\tan y = \sinh x$$
, $x = \ln 2$ (d) $\cosh y = 3^x$, $x = 2$

(d)
$$\cosh y = 3^x$$
, $x = 2$

Note that $\sinh x = \frac{e^x - e^{-x}}{2}$ and $\cosh x = \frac{e^x + e^{-x}}{2}$.

3. Find the following integrals.

(20%)

(a)
$$\int_0^{\pi} \sqrt{1 + \cos x} dx$$

(b)
$$\int_{\pi/6}^{\pi/4} (1 + \csc x)^2 dx$$

(c)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} \sin \sqrt{x^2 + y^2} \, dy dx$$

(d)
$$\int \int_{\Omega} e^{x^2} dx dy$$
, Ω is the triangular region bounded by the x-axis, $2y = x$, $x = 2$

4. Let f be everywhere continuous with f(1) = a and set

(10%)

$$F(x) = \int_0^{x^2} \left[t \int_1^t f(u)du\right] dt.$$

Find F'(x), F'(1), F''(x) and F''(1).

5. Set
$$f(x) = x$$
, if x is rational; $f(x) = 0$, if x is irrational. Set $g(x) = xf(x)$. (10%)

- (a). Is f continuous at 1?
- (b) Is f continuous at 0?
- (c) Is f differentiable at 0?
- (d) Is g continuous at 0?
- (e) Is g differentiable at 0?

編號: 294

閩立成功大學九十七學年度碩士班招生考試試題

共 2 頁 第2頁

系所:統計學系

科目:數學

本試題是否可以使用計算機: □可使用 ,

, 以不可使用 (請金

(請命題老師勾選)

考試日期:0302,節次:1

6. Let
$$a = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, $c = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ and $d = \begin{bmatrix} -7 \\ 2 \\ 2 \end{bmatrix}$. (10%)

- (a) (2%) Give d as a linear combination of a, b and c.
- (b) (6%) By using Gram-Schmidt, orthogonalize a, b and c to get orthonormal vectors q_1 , q_2 and q_3 .
- (c) (2%) Give the change of basis matrix from the basis a, b and c to the basis q_1 , q_2 and q_3 .
- 7. Let A be a 3×4 matrix such that

(10%)

$$A\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 - x_2 - x_3 + x_4 \\ x_1 + 2x_2 - x_4 \\ x_1 + x_2 - 3x_3 + 3x_4 \end{bmatrix}.$$

Find the column space and null space s of A with bases and dimensions.

8. If you know that $\det A = \begin{vmatrix} \operatorname{row} 1 \\ \operatorname{row} 2 \\ \operatorname{row} 3 \end{vmatrix} = 6$, find the determinants of B, C and D. (10%)

$$\det B = \begin{vmatrix} \operatorname{row}1 + \operatorname{row}2 + \operatorname{row}3 \\ \operatorname{row}1 + \operatorname{row}2 \\ \operatorname{row}1 \end{vmatrix} \quad \det C = \begin{vmatrix} \operatorname{row}1 - \operatorname{row}3 \\ \operatorname{row}2 - \operatorname{row}1 \\ \operatorname{row}3 - \operatorname{row}2 \end{vmatrix}$$

$$\det D = \begin{vmatrix} 1 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 1 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 1 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 1 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 1 \end{vmatrix}$$