系所組別 統計學系 考試科目 數理統計

1838

新村日期 - 0306 · 新井 : 2

※ 考生請注意:本試題 □可 図不可 使用計算機

- 1. (7 points \times 6 = 42 points) Let $X = (X_1, X_2)^T$ be a random vector distributed as trinomial (n, p_1, p_2) , $0 \le X_1 + X_2 \le n, X_1 \ge 0$, $i = 1, 2, 0 \le p_1 + p_2 \le 1$, $p_1 \ge 0$, i = 1, 2.
 - 1 For n=1, write down the probability mass function (p,m,f) of X. Find the marginal p,m,f of X_i.
 - 2. (Continued) Find $E(X_i)$, i = 1, 2, and $Cov(X_1, X_2)$
 - 3. For general *n*, find the conditional distribution of $X_1 \mid X_2 = x_2$.
 - (Continued) Find E(X₁ | X₂ = x₂) and verify that E(X₁ | X₂ = x₂) can be written in a linear form β₀ + β₁x₂.
 - 5. (Continued) The β_0 and β_i are functions of $E(X_i)$, $Var(X_i)$, i=1,2, and

$$Cov(X_1, X_2)$$
. Verify that

$$\beta_0 = g_0(E(X_i), Var(X_i), i = 1, 2, Cov(X_1, X_2)) = E(X_1) - Corr(X_1, X_2) \sqrt{\frac{Var(X_1)}{Var(X_1)}} E(X_2)$$

and

$$\beta_1 = g_1(E(X_1), Var(X_1), i = 1, 2, Cov(X_1, X_2)) = Corr(X_1, X_2) \sqrt{\frac{Var(X_1)}{Var(X_1)}},$$

where $Corr(X_1, X_2)$ is the Pearson correlation coefficient of X_1 and X_2

6. Prove or disprove that $Var(X_1) = Var(E(X_1 \mid X_2)) + E(Var(X_1 \mid X_2))$.

II. (8 points) Let X_1, X_2, X_3 be i.i.d. sample from a gamma distribution with p.df.

$$f_{x}(x;r,\lambda) = \frac{\lambda' x^{r-1} e^{-\lambda x}}{\Gamma(r)}, x > 0, \quad \gamma > 0.$$

Find the distribution of $\overline{X}_3 = (X_1 + X_2 + X_3)/3$

III. (7 points x 5 = 35 points) The R&D Department of ABC Group wants to establish a model for its petroleum industry about equipment VOCs leak emission rate so that a better sampling plan can be designed. It is known that the VOCs leak emission rate X for equipment LF follows a lognormal distribution, i.e.,

$$Y = \ln X \sim N(\mu_Y, \sigma_Y^2)$$
. If we have a random sample $Y_1, Y_2, ..., Y_n$

1 Find E(X) and Var(X) (背面仍有題目,請繼續作签)

细糖

系所組別

考試科目 數理統計

考試日期: 0306· 節次: 2

※ 考生請注意:本試題 □可 ☑不可 使用計算機

2. Based on $Y_1, Y_2, ..., Y_n$, find the MLEs of μ_Y and σ_Y^2 , and the MLE of $E(X) = g(\mu_Y, \sigma_Y^2)$

 $E(X) = g(\mu_{\gamma}, \sigma_{\gamma}^{2})$ 3. It is hoped the estimated relative error rate, defined as

$$\left| \frac{\hat{E}(X) - E(X)}{F(Y)} = \frac{\hat{g}(\mu_{\gamma}, \sigma_{\gamma}^2) - g(\mu_{\gamma}, \sigma_{\gamma}^2)}{g(\mu_{\gamma}, \sigma_{\gamma}^2)} \right|,$$

should be less than τ with confidence level larger than $1-\alpha$. Let the MLE of (μ_v, σ_v^2) be $(\hat{\mu}_v, \hat{\sigma}_v^2)$

(1). Find the distribution of $\sqrt{n}(\hat{\mu}_v - \mu_v)$. Find the asymptotic distribution of

$$\sqrt{n}(\hat{\sigma}_{*}^{2} - \sigma_{*}^{2})$$

(2).It can be shown that

$$\hat{g}(\mu_{\gamma}, \sigma_{\gamma}^{2}) - g(\mu_{\gamma}, \sigma_{\gamma}^{2}) \approx \frac{\partial g(\mu_{\gamma}, \sigma_{\gamma}^{2})}{\partial \hat{\mu}_{\nu}} (\hat{\mu}_{\gamma} - \mu_{\gamma}) + \frac{\partial g(\mu_{\gamma}, \sigma_{\gamma}^{2})}{\partial \hat{\sigma}^{2}_{\nu}} (\hat{\sigma}_{\gamma}^{2} - \sigma_{\gamma}^{2})$$

Show that $\sqrt{n}(\hat{g}(\mu_v, \sigma_v^2) - g(\mu_v, \sigma_v^2))$ asymptotically follows

$$N(0, (g(\mu_{\gamma}, \sigma_{\gamma}^{2}))^{2} \sigma_{\gamma}^{2} + \frac{1}{2} (g(\mu_{\gamma}, \sigma_{\gamma}^{2}))^{2} \sigma_{\gamma}^{4}),$$

where $\hat{g}(\mu_v, \sigma_v^2)$ is the MLE of $g(\mu_v, \sigma_v^2)$

(3). For given μ_r , σ_r^2 and $0 < \alpha < 1, r$, find the minimum value of n such that

$$P\left(\left|\frac{\hat{g}(\mu_{Y},\sigma_{Y}^{2})-g(\mu_{Y},\sigma_{Y}^{2})}{g(\mu_{Y},\sigma_{Y}^{2})}\right| \leq \tau\right) \geq 1-\alpha$$

IV. (15 points) Suppose we observe x and want to test $H_0: x$ is from f_0 vs. $H_1: x$ is from f_1

where

1. (8 points) Find the most powerful (MP) test for H_0 , f_0 vs. H_1 , f_1 at $\alpha =$

0.05. Find the power of the test.

2. (7 points) If we set $\alpha = 0.10$, what is the MP test? What is the power of the test?