編 號: 235

系 所:會計學系

科 目:資料結構

日 期: 0203

節 次:第3節

備 註: 不可使用計算機

編號: 235 **國立成功大學 110 學年度碩士班招生考試試題** 系 所: 會計學系

考試科目:資料結構

考試日期:0203,節次:3

第1頁,共6頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
一、 選擇題 (50 分, 每題 5 分)
1. With what data structure can dictionary be implemented most
efficiently when performing 'search, 'delete' and 'insert' operations?
a) Array
b) List
c) Hash table
d) Tree
2. When we use a max heap to implement a priority queue, the time
complexity of the delete operations is
A. $O(\log n)$ B. $O(n)$ C. $O(n \log n)$ D. none of the above
3. When does the Segment Fault Exception occur?
a) Compile-time
b) Run-time

編號: 235 國立成功大學 110 學年度碩士班招生考試試題

系 所:會計學系 考試科目:資料結構

考試日期:0203,節次:3

考試科目	:資料結構
第2頁,	共6頁

c) Not an error			
d) Not an exception at all			
4. Modern computers have memory caches, which speed up reads and			
writes if they are to locations near recently-accessed memory. This makes			
sequential access to memory faster, in general, than random access. Which			
of the sorting algorithms below you would expect to benefit least from			
caching?			
a) Insertion sort			
b) Mergesort			
c) Quicksort			
d) Heapsort			
5. A pointer points to a location in memory, and obtaining the value			
stored at that location is known as the pointer.			
A. disengage B. dereferencing C. disembarking D. none of the above			

編號: 235 系 所:會計學系 考試科目:資料結構

考試日期:0203,節次:3

第	3	頁	,	共	6	自	

6. The average time complexity for sorting n numbers using the quick
sort algorithm is
A. O(n^2) B. O(n log n) C. O(n) D. O(n^2 log n)
7. A stack follows a rule.
A. LILO B. fair stay C. FILO D. FIFO
8. Which of the following is <i>not</i> the required condition for binary search
algorithm?
argorium:
A. The list must be sorted
B. It should be able to directly access the middle element in any sublist.
C. There must be mechanism to create new element in list
D. none of above
9. Which data structure does not keep its elements in any type of order?
A. set B. queue C. list D. stack

系 所:會計學系

考試日期:0203,節次:3

亏政件日	・貝科物
箅 4 百,	共6百

編號: 235

- 10. In a min-heap, element with the least key is always in which node?
- a) Leaf node
- b) First node of left sub tree
- c) root node
- d) First node of right sub tree
- 2. 問答題(50分)
- 1. (20) Explain the following terms.
- a) Method overloading b) Prefix code c) Polymorphism d) AVL tree
- 2. (15) Show the results of adding the following numbers into an initially empty balanced binary search tree:

3. (15) Consider the following binary search tree method.

```
public Key mystery(Key key) {
```

Node best = mystery(root, key, null);

編號: 235

系 所:會計學系 考試科目:資料結構

考試日期:0203,節次:3

```
考試科目:資料約
第5頁,共6頁
```

```
if (best == null) return null;
  return best.key;
}
private Node mystery(Node x, Key key, Node best) {
  if (x = null) return best;
  int cmp = key.compareTo(x.key);
  if (cmp < 0) return mystery(x.left, key, x);
  else if (cmp > 0) return mystery(x.right, key, best);
   else return x;
 (a) What does mystery(key) return. Assume key is a data type value of
    the specified type and not null. Circle the best answer.
    A. Predecessor: the largest key in the symbol table < the search key?
    B. Floor: the smallest key in the symbol table ≤ the search key?
    C. Ceiling: the smallest key in the symbol table ≥ the search key?
    D. Successor: the smallest key in the symbol table > the search key?
```

編號: 235

系 所:會計學系

考試科目:資料結構 第6頁,共6頁

考試日期:0203,節次:3

E. Get: the key in the symbol table equal to the search key if it's there; null otherwise.

- F. Bad code: Null pointer exception or infinite loop on some inputs.
- (b) What is the worst-case number of compares for mystery()? Assume that the BST is balanced. Choose the best answer.
 - 1 log N N N^2 2^N