※ 考生請注意：本試題可使用計算機
一，選擇題：（18分，每題3分）

請勿在本試題紙上作答，否則不予計分

1．A random sample of 10 items is taken from a normal population．The sample had a mean of 82 and a standard deviation is 26 ．Which is the appropriate 99% confidence interval for the population mean？
（A） $82 \pm z_{0.005}$（26）
（B） $82 \pm z_{0.0005}$（26）
（C） $82 \pm z_{0.01}(26 / \sqrt{10})$
（D） $82 \pm z_{0.005}(26 / \sqrt{10})$
（E）none of the
above
2．A sample of 150 new cell phones produced by HTC found that 12 had cosmetic flaws．A 90% confidence interval for the proportion of all new HTC phones with cosmetic flaws is 0.044 to 0.116 ．Which statement below provides the correct interpretation of this confidence interval？
（A）There is a 90% chance that the proportion of new phones that have cosmetic flaws is between 0.044 and 0.116 ．
（B）If you selected a very large number of samples and constructed a confidence interval for each， 90% of these intervals would include the proportion of all new phones with cosmetic flaws．
（C）There is at least a 4.4% chance that a new phone will have a cosmetic flaw．
（D）A sample of 150 phones will have no more than 11.6% with cosmetic flaws．
（E）none of the above
3．The general partner of a limited partnership firm has told a potential investor that the mean monthly rent for a 3－bedroom home in the area is $\$ 500$ ．The investor wants to check out this claim on her own．She obtains the monthly rental charges for a random sample of 9 three－bedroom homes in order to test $\mathrm{H}_{0}: \mu=500$ against $\mathrm{H}_{\mathrm{a}}: \mu \neq 500$ ，at $\alpha=10 \%$ ．The sample mean is $\$ 520$ with a sample standard deviation of $\$ 48$ ．Which one is the appropriate rejection region？
（A）$t>2.306$
（B）$-1.86<t<1.86$
（C）$t>1.833$
（D） $\mathrm{t}<-1.86$ or $\mathrm{t}>1.86$（E） $\mathrm{t}<-2.306$ or $\mathrm{t}>2.306$

4．Based on problem 3，what is the value of the test statistic？
（A） 1.25
（B）-1.25
（C） 0.42
（D）-0.42
（E） 20

5．Based on problem 3，in order for the above procedure to be valid，what assumption will be necessary？
（A）The population distribution of the monthly rent is approximately normal．
（B）The population distribution of the monthly rent is uniform．
（C）The population distribution of the monthly rent is skewed．
（D）No assumption will be necessary．
6．Which of the following is TRUE？
（A）Assume events A and B are not disjoint．Then，$P(A \cap B)=P(A) \cdot P(B)$ ．
（B）The result $\mathrm{E}[g(X)]=g[\mathrm{E}(X)]$ holds for $g(X)=2 X+4$ ，but does not hold for $g(X)=X^{2}$ ．
（C）An optimal hypothesis test is defined as the test that minimizes types I and II error．
（D）An interval estimation is just the probability that your estimator（say \bar{x} ）is contained in a random interval with probability $1-\alpha$ ．
（E）none of above

※ 考生請注意：本試題可使用計算機

二，簡答題：（15分，每題3分）
Answer the following questions with an answer and a short explanation．Answers without explanation get at most 1 point．
1．The chance of flipping exactly 50 heads in 100 independent tosses of a fair coin is nearly half．True or False？Explain．
2．When estimating a proportion，a random sample of size 200 from a population of 20,000 is as accurate as a random sample of size 400 from a population of 40,000 ，assuming the true proportions are the same for both populations．True or False？Explain．
3．Using a t－test instead of a z－test to estimate a mean when a standard deviation is known，the data is roughly normal，and the sample size is small（under 30），will the chance of accepting an alternative hypothesis increase when the null hypothesis is in fact correct．True or False？Explain．
4．If X denotes the number of successes in n independent Bernoulli trials，each trial having success probability p ，and if Y denotes the number of failures，what is the variance of $X-Y$（in terms of n and p ）？
5．Based on previous question，what is the variance of $X+Y$ ？

三，計算題：（67 分）
1．You have a random sample of size n from a $\mathrm{U}[0, \theta]: X_{1}, \ldots, X_{\mathrm{n}}$ ．However，you do not observe X_{i} directly， but only a signal Y_{i} of the process．Whenever X_{i} is greater than $0.5, Y_{\mathrm{i}}$ takes the value of 1 ．Whenever X_{i} is lower or equal than $0.5, Y_{i}$ takes the value of $0 .(7 \%)$
（1）Write down the pdf of Y_{i}（with value either 0 or 1 ），denoted by $f(y)$ ，as a function of θ ．（4\％）
（2）Let $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ be the sample mean．Derive $\hat{\theta}$ ，the method of moments estimator for θ ，
in terms of $\bar{Y} .(3 \%)$
2．The returns of an asset management firm in different years are independent and normally distributed with unknown mean and variance．The asset management firm claims that the standard deviation of the returns is as low as $\sigma=2 \%$ and the mean of the returns is $\mu=22 \%$ ．You believe that this is too good to be true．To verify your suspicion，you take the returns from the last 10 years．These are：
$r=\{20.6,19.2,17,19.1,18.7,22.5,27.2,17.9,22.5,21.3\}$ ．To help you with the calculations，we give： $\sum_{i=1}^{n} r(i)=206$ and $\sum_{i=1}^{n}(r(i)-\bar{r})^{2}=79.34$
Answer the following questions：（ 10% ）
（1）Calculate the sample mean and standard deviation of the above random sample．（3\％）
（2）What is the probability that when we draw a new random sample of size 10 ，its sample mean will be below the one you calculated in（1）？Assume that the company＇s claims are correct．（3\％）
（3）What is the probability that when we draw a new random sample of size 10 ，its sample standard deviation will be larger than the one you calculated in（1），if that the company＇s claims are correct？（4\％）
※ 考生淸注意：本試題可使用計算機

3．（6\％）Briefly describe the possible problems when using stepwise regression model as the＂final＂model．
4．（ 16% ）Consider a multiple regression model for a response y ，with one quantitative independent variable x_{1} and one qualitative variable at three levels．
（1）(5%) Provide a complete first－order model that includes the interaction between the quantitative and qualitative independent variables．You have to specify the coding scheme for dummy variables．
（2）（5\％）Provide a complete second－order model that includes the interaction between the quantitative and qualitative independent variables．
（3）（3\％）For（2），under what circumstances will the response curves of the model have the same shape but different y－intercepts？
（4）（3\％）For（2），under what circumstances will the response curves of the model be identical？
5．（ 14% ）To determine whether extra personnel are needed for the day，the owners of a water adventure park would like to find a model that would allow them to predict the day＇s attendance each morning before opening based on the day of the week and weather conditions．The model is of the form $E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$ ，where $y=$ Daily admission，
$x_{1}=\left\{\begin{array}{lc}1, & \text { if weekend } \\ 0, & \text { otherwise }\end{array}\right.$（dummy variable）
$x_{2}=\left\{\begin{array}{ll}1, & \text { if sunny } \\ 0, & \text { if overcast }\end{array}\right.$（dummy variable），
$x_{3}=$ predicted daily high temperature（ ${ }^{\circ} \mathrm{F}$ ）．
These data were recorded for a random sample of 30 days，and a regression model was fitted to the data． The least squares analysis produced the following results：$\hat{y}=-105+25 x_{1}+100 x_{2}+10 x_{3}$ with $s_{\hat{\beta}_{1}}=10$ ， $s_{\hat{\beta}_{2}}=30, s_{\hat{\beta}_{3}}=4, R^{2}=.65$ ．
（1）(5%) Is there sufficient evidence to conclude that this model is useful for the prediction of daily attendance？Use $\alpha=0.1$ ．
（2）（5\％）Is there sufficient evidence to conclude that the mean attendance increases on weekends？Use $\alpha=$ 0.10 ．
（3）（4\％）Use the model to predict the attendance on a sunny weekday with a predicted high temperature of $95^{\circ} \mathrm{F}$ ．

6．（ 14% ）Suppose a 3×3 factorial experiment is conducted with three replications．Assume that $\mathrm{SS}($ total $)=$ 1000．For the following scenario：The Sum of Squares of factor A main effect［SS（A）］is 20% of $\operatorname{SS}($ total ）， the Sum of Squares for factor B main effect［SS（B）］is 10% of SS（total），and the Sum of Squares for interaction $[\mathrm{SS}(\mathrm{AB})]$ is 10% of SS （total）．
（1）(7%) Form an ANOVA table．
（2）(7%) Conduct the appropriate tests．Use $\alpha=0.1$ ．

系所組別：資訊管理研究所甲組
考試科目：統計學
※ 考生請注意：2 Table VII Percentage Points of the F－Distribution，$a=.10$

f（t）

Degrees of Freedom	！， 10	toso	1905	t．0n0	t．00s	tom	t．anos
1	3.078	6.314	12．706	31.821	63.657	3183i	636.62
2	1.886	2.920	4305	6.965	9.925	22．326	31.598
	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.535	2.132	2.776	3.747	4.604	7.179	8.610
S	1.476	2.015	2.571	3.365	4.032	5.893	6.869
	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1372	1.812	2.228	2764	3.169	4.144	4.587
11	1.365	1.796	2.201	2.718	3.106	4.105	4.437
12	1356	1.782	2.179	2.683	3.055	3.930	4.318
13	1.350	1.775	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.78 ？	4.1401
15	1.341	1.753	2.131	2.602	2.947	3.133	4.073
16	1.337	1.746	2.120	2.583	2.921	3.086	4.015
17	1.333	1.740	3.110	2.567	2.898	3.546	3.965
18	1.330	1.734	2.101	$\bigcirc 552$	2.878	3.610	3.922
19	1328	1.790	2.093	2.539	2.861	3.579	3.883
20	1.535	1.725	2.086	2.528	2845	3.552	3.85
21	1.323	1.721	2.080	2.518	2.831	$3.52 ?$	3.819
22	1.321	1.717	2074	2.508	2.819	3.505	3.792
23	$1.31{ }^{\circ}$	1.714	2069	± 500	2．80：－	3.485	3.767
24	1.518	1.711	2.064	2.492	2．79\％	3.467	3.745
25	1.316	1.708	2.060	2.485	2787	3.450	3.725
26	1315	1.706	2.056	2.479	2779	3.435	3.707
27	1.314	． 70.7	2.052	2.478	2771	3.421	3.690
28	1313	1.701	2.048	2.467	2.76 .3	3.405	3.674
29	1.311	1.699	2.045	$2.46{ }^{\circ}$	2.756	3．39\％	3.659
30	1.316	1．69？	2042	2.457	2.750	3.385	3.646
40	1.303	1.654	2.021	2.439	2.704	3.307	3.551
60	1.29%	1.671	2.000	$\stackrel{39}{ }$	2.660	3．23：－	3．46n
120	$1.28{ }^{\circ}$	1.658	1.980	2355	2.617	3.1619	3.575
∞	$1.28:$	1.645	1.960	2320	2.576	3.090	3.291

