國立成功大學 110學年度碩士班招生考試試題

編 號: 246

系 所: 資訊管理研究所

科 目:資料結構

日 期: 0203

節 次:第3節

備 註:不可使用計算機

編號: 246

國立成功大學 110 學年度碩士班招生考試試題

系 所:資訊管理研究所

考試科目:資料結構

考試日期:0203,節次:3

第1頁,共2頁

>%	举件 建汁辛	本試顯不可使用計算機。		,於本試題紙上作答者,	不予計分。
×	有牛頭汁息,	本記與个門伊用計具機。	调	,心中武灵然LTF合有,	117177

- 1. The Euclidean algorithm is a method for computing the greatest common divisor of two positive integers. This algorithm works by continually computing remainders until 0 is reached.
 - (a) (5%) Argue why this algorithm can be used to compute the greatest common divisor of two integers.
 - (b) (5%) Write a program for the Euclidean algorithm.
 - (c) (10%) Analyze the time complexity of the Euclidean algorithm.
- 2. The heapsort algorithm has two main steps: build_heap and delete-heap.
 - (a) (10%) Show the results of build_heap and delete_heap by using only an array to sort {22, 45, 8, 19, 6, 39, 51}
 - (b) (5%) Show that the time complexity of the heapsort algorithm is O(nlogn).
 - (c) (5%) Argue whether the heapsort algorithm has the fastest running time among all sorting algorithms.
- (10%) Set difference A B finds the elements in A but not in B. For example, if A = {1, 2, 4} and B = {3, 4, 5}, then A B = {1, 2}. Given two sorted linked lists L₁ and L₂, write a procedure to compute L₁ L₂ using only the basic operations for the linked list, and justify your answer.

國立成功大學 110 學年度碩士班招生考試試題

編號: 246

所:資訊管理研究所

考試科目:資料結構

考試日期:0203, 箭次:3

第2頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 4 . [15%] True or False, and EXPLAIN

Circle T(true) or F(false). If the statement is correct, briefly state why. If the statement is wrong, explain why or give a counterexample. Answers WITHOUT reasons will get at most 1 point.

- (a) [3%] The adjacency matrix representation is usually preferred over adjacency lists, especially for storing sparse graphs compactly.
- (b) [3%] Given the data structures (i.e., the nodes connectable from the source) produced by depth-first search (DFS), one can check whether a given vertex is connected to the source in constant time.
- (c) [3%] For a digraph containing negative arc weight but no negative cycle, if we modify the arc weight c_{ii} by $c_{ij} + \max_{(i,j) \in A} \{|c_{ij}|\}$ for each arc (i,j), we can apply the Dijkstra's algorithm using this modified arc weight to obtain the same shortest path that uses the original weight.

Let G be any simple graph (no self-loops or parallel edges) with positive and distinct edge weights.

- (d) [3%] If the weights of all edges in G are increased by 7, then any MST in G is an MST in the modified edge-weighted graph. Also, such an MST must be unique.
- (e) [3%] If the weights of all edges outging from the source node s are increased by 7, then any shortest path originated from s is still a shortest path in the modified edge-weighted graph from s.
- $5 \cdot [20\%]$ If we have $n = 2^{h+1} 1$ integers with value 2^i for i=1,2,...,n. Answer the following quesionts:
- (a) [4%] Draw a complete BST of height h=3 that stores these n=15 integers.
- (b) [6%] Can we store these n integers by a complete BST of height h in O(n) time? If yes, briefly explain how to do it and why it is O(n) time; Otherwise, explain why not and estimate a lower bound $\varpi(n)$ time.
- (c) [4%] Draw a max heap of height h = 3 that stores these n = 15 integers.
- (d) [6%] Can we store these n integers as a max heap in O(n) time? Why or why not?
- 6 . [15%] Answer the following questions:
- (a) [5%] List the following functions by increasing asymptotic growth rate. Circle those functions of the same asymptotic growth rate:

 1.00001^n 9999 $n \log n$ $n(\lg n)^2$ $0.001\lg(n^n)$

- (b) [5%] Given a BST, and we want to search for the number 45. Which (possibly multiple) of the following sequences could be the sequence of nodes examined? Explain your answer.
 - (b1) 1, 2, 3, 7, 15, 11 (b2) 9, 7, 6, 10, 20, 45 (b3) 50, 25, 27, 40, 44, 42, 46 (b4) 60, 21, 40, 44
- (c) [5%] Please draw the red-black tree constructed by adding the following numbers in the sequence: 50, 10, 25, 75, 100, 0, 5 (please use a Square to represent a black node, and a circle for a red node)