國立成功大學 105 學年度碩士班招生考試試題

系 所:財務金融研究所

考試科目:統計學

考試日期:0228,節次:3

第1頁,共4頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Multiple choice (30%)

- 1. If (P(X=x|Y=y) = P(X=x), then
- a.) Y is the dependent variable
- b.) X and Y are positively correlated
- c.) X and Y are statistically independent
- d.) Y must be a discrete random variable
- 2. The expected value of a random variable is
- a.) the probability weighted mean
- b.) a measure of central tendency of the pdf
- c.) average value that occurs in many repeated trial of an experiment
- d.) all of the above
- 3. If Z is a random variable generated by adding together X and Y which are also random variables, what do we know about var(Z) if X and Y are positively correlated.?
- a.) var(Z) = var(X) + var(Y)
- b.) var(Z) < var(X) + var(Y)
- c.) var(Z) > var(X) + var(Y)
- d.) var(Z) = var(X) * var(Y)
- 4. Which of the following is NOT an assumption of the Simple Linear Regression Model?
- a.) The value of y, for each value of x, is

$$y = b_1 + b_2 x + e$$

b.) The variance of the random error e is

$$var(e) = \sigma^2$$

- c.) The covariance between any pair of random errors e_i and e_j is zero
- d.) The parameter estimate of b_1 is unbiased.
- 5. In the OLS model, what happens to $var(b_1)$ as the sample size (N) increases?
- a.) it also increases
- b.) it decreases
- c.) it does not change
- d.) cannot be determined without more information
- 6. Which of the following non-linear adjustments CANNOT be accommodated using OLS?
- a.) including an independent variable that has been raised to a power
- b.) taking a logarithmic transformation of the dependent variable

國立成功大學 105 學年度碩士班招生考試試題

系 所:財務金融研究所

考試科目:統計學

考試日期:0228,節次:3

第2頁,共4頁

- c.) including a binary indicator variable
- d.) raising parameters to a power
- 7. How do you interpret the estimated value of b_2 in the following equation:

 $ln(ENT EXP) = b_1 + b_2 (INCOME) + e$

where *INCOME* is annual household income (in thousands) and *ENT_EXP* is annual entertainment expenses?

- a.) the income elasticity of entertainment
- b.) when multiplied by 100 it is the percentage increase in entertainment expenses associated with an additional \$1000 in income
- c.) the increase in entertain expenses associated with a 1% increase in income
- d.) the average of the logarithm of entertainment expenses for a household with zero income
- 8. You have estimated the following equation using OLS:

 $\hat{y} = 33.75 + 1.45 MALE$

where y is annual income in thousands and *MALE* is an indicator variable such that it is 1 for males and 0 for females. According to this model, what is the average income for females?

- a.) \$33,750
- b.) \$35,200
- c.) \$32,300
- d.) cannot be determined
- 9. For which alternative hypothesis do you reject H_0 if $t \le t_{(\alpha, N-2)}$?
- a.) $\beta_k = c$
- b.) $\beta_k \neq c$
- c.) $\beta_k > c$
- d.) $\beta_k < c$
- 10. When should a left-tailed significance test be used?
- a.) When economic theory suggests the coefficient should be positive
- b.) When it allows you to reject the null hypothesis at a lower p-value
- c.) When economic theory suggests the coefficient should be negative
- d.) When you know the true value of β_k is positive.

Problems:

國立成功大學 105 學年度碩士班招生考試試題

系 所:財務金融研究所

考試科目:統計學

考試日期:0228,節次:3

第3頁,共4頁

1.

Consider the following five observations for regression analysis. (30%)

					<u> </u>
X	y	$x - \bar{x}$	$(x-\bar{x})^2$	$y-\bar{y}$	$(x-\bar{x})(y-\bar{y})$
0	6				
1	5				
2	3		(諸勿在此	作卷)	
3	1			, <u>, , , , , , , , , , , , , , , , , , </u>	
4	0				
$\sum x_i$	$\sum y_i$	$\sum (x_i - \bar{x})$	$\sum (x_i - \bar{x})^2$	$\sum (y_i - \bar{y})$	$\sum (x - \bar{x})(y - \bar{y})$

- a. Complete the entries in the table. Put the sums in the last row. What are the sample means \bar{x} and \bar{y} ? (3%)
- b. If the regression model is: $y = b_1 + b_2 x + e$, using the results of the least square method to calculate b_1 and b_2 . (3%)
- c. Using the numerical values, show that

$$\sum (x_i - \bar{x})^2 = \sum x_i^2 - N\bar{x}^2$$
 and $\sum (x - \bar{x})(y - \bar{y}) = \sum x_i y_i - N\bar{x}\,\bar{y}$. (3%)

d. Use the least squares estimates from b., to complete the following entries. Put the sums in the last row. (3%)

x_i	y _i	$\widehat{\mathcal{Y}}_{l}$	$\widehat{e_i}$	$\widehat{e_i}^2$	$x_i \widehat{e_i}$
0	6				
1	5				
2	3	(諸勿在出	作卷)		
3	1				
4	0				
		$\sum \widehat{y_t}$	$\sum \widehat{e_i}$	$\sum \widehat{e_i}^2$	$\sum x_i \widehat{e_i}$

- e. Plot the data point and sketch the fitted regression line. (3%)
- f. On the sketch in part e, locate the point of means (\bar{x}, \bar{y}) , does your fitted line pass through that point? (3%)
- g. Show that for these numerical values $\bar{y} = b_1 + b_2 \bar{x}$. (3%)
- h. Show that for these numerical values $\bar{\hat{y}} = \bar{y}$. (3%)
- i. Compute $\widehat{\sigma}^2$ (variance of \widehat{e}_i)? (3%)
- j. Compute variance of $\widehat{b_2}$. (3%)

國立成功大學 105 學年度碩士班招生考試試題

系 所:財務金融研究所

考試科目:統計學

考試日期:0228,節次:3

第4頁,共4頁

2. (20%)

Let x be a continuous random variable with probability density function given by

$$f(x) = -\frac{1}{2}x + 1, \ 0 \le x \le 2.$$

- a. Graph the density function f(x). (3%)
- b. Find the total area beneath f(x) for $0 \le x \le 2$. (3%)
- c. Find $P(X \ge 1)$ using both geometry and integration. (3%)
- d. Find $P(X \le \frac{1}{2})$ using both geometry and integration. (3%)
- e. Find $P(X = 1\frac{1}{2})$. (2%)
- f. Find the expected value and variance of X. (3%)
- g. Find the cumulative distribution function of X. (3%)

3. (20%)

Suppose that Y_1, Y_2, Y_3 is a random sample from a $N(\mu, \sigma^2)$ population. To estimate μ , consider the weighted estimator $\tilde{Y} = \frac{1}{2}Y_1 + \frac{1}{3}Y_2 + \frac{1}{6}Y_3$.

- a. Show that \tilde{Y} is a linear estimator. (5%)
- b. Show that \tilde{Y} is an unbiased estimator. (5%)
- c. Find the variance of \tilde{Y} and compare it to the variance of the sample mean \bar{Y} . (5%)
- d. Is \tilde{Y} as good an estimator as \bar{Y} ? (5%)