（1）Given a 3 by 3 matrix $A=\left[\begin{array}{ccc}2 & 3 & 1 \\ 4 & -5 & 3 \\ -2 & 8 & -1\end{array}\right]$ ，find the lower triangular matrix L and upper triangular matrix U such that $A=L U .(20 \%)$
（2）A continuous complex－valued function is defined on the interval $[0,2 \pi]$ with the inner product：$\langle f, g\rangle=\frac{1}{2 \pi} \int^{2 \pi} f(t) \overline{g(t)} d t$ ，where the bar denotes complex conjugation．Given i the imaginary number such that $i^{2}=-1$ ．Let $f_{n}(t)=e^{n \pi}$ ， where $0 \leq t \leq 2 \pi$ ．Find $\left\langle f_{m}, f_{n}\right\rangle$ ，for any integer m, n ．（20\％）
（3）Given $A^{2}=\left[\begin{array}{ccc}-2 & -3 & 3 \\ -5 & 4 & 5 \\ -11 & -3 & 12\end{array}\right]$ ，find $A \cdot(20 \%)$
（4）The time，in hours，it takes to locate and repair an electrical breakdown in a cell phone factory is a random number，X ，whose density function is given by

$$
f_{x}(x)= \begin{cases}1 & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

If the cost involved in a breakdown of duration x is x^{3} ，what is the expected cost of such a breakdown？（20\％）
（5）Suppose that 15 percent of the residents in Taiwan in a certain community have no cell phone， 20 percent have 1,35 percent have 2 ，and 30 percent have 3 cell phones；and suppose，further，that for each resident，each cell phone is equally likely（and independently）to be a smartphone（ S ）or a traditional feature phone (T) ．（a）Please calculate the probability that a resident chosen at random from this community will have at least 1 traditional feature phone．（b）If we know that the resident chosen has exact 1 traditional feature phone，please compute the probability that this resident will also own at least 1 smartphone．（20\％）

