編號: 298	國立成功大學 102 學年度碩士班招生考試試題	共	1	頁・算	第 1	頁
系所組別	:電信管理研究所乙組					
考試科目	:線性代數	考	试日	朝:0224	4,節	次:2

※ 考生請注意:本試題不可使用計算機

(1) Let D^k denote the *k*th derivative operator. Find the general solution of the differential equation: L(y) = 0, where $L = D^3 - D^2 - 8D + 12$. (20%)

(2)
$$A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$$
, find e^{tA} . (20%)

(3) Given an equation: $2x_1^2 + 4x_1x_2 + 5x_2^2 + 4x_1 + 13x_2 - \frac{1}{4} = 0$, transfer the equation into the form: $ap^2 + bq^2 = c$, where *p*, *q* are variables; and *a*, *b*, *c* are constants. Find the value of *a*, *b*, *c* and express *p*, *q* in terms of x_1 and x_2 . (20%)

(4) Given a square matrix A, if $A^2 = A$, prove that $(A + I)^k = I + (2^k - 1)A$, where I is the identity matrix. (20%)

(5)
$$f(x) = \begin{vmatrix} 1 & x & x^2 & x^3 \\ 0 & 1 & 2x & 3x \\ 0 & 0 & 2 & 3 \\ 1 & e^x & e^{2x} & e^{3x} \end{vmatrix}$$
, solve $f'(x) = 0.$ (20%)