編號: 338

國立成功大學九十七學年度碩士班招生考試試題

共 | 頁,第1頁

系所: 電信管理研究所乙、丙組

科目:線性代數

本試題是否可以使用計算機: □可使用 , 124不可使用 (請命題老師勾選)

考試日期:0302,節次:3

(1) We are familiar with the formula:

$$1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$
, a polynomial has degree 2.

Please derive a formula for the sum: $1^3 + 2^3 + 3^3 + ... + n^3 = f(n)$ in details.

(Hint: f(n) is a polynomial of degree 4) (20%)

(2) Let \mathbf{M}_{22} be the vector space of all 2×2 matrices, \mathbf{P}_2 be the vector space of all real

polynomials with degree ≤ 2 , and \mathbb{R}^2 be the 2-dimensional Euclidean vector space.

Define
$$S: \mathbf{M}_{22} \to \mathbf{P}_2$$
 by $S(\mathbf{A}) = (3c - d)x^2 + (b + 2c)x + (a - c)$, where $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

Define
$$T: \mathbf{P}_2 \to \mathbf{R}^2$$
 by $T(a_0 + a_1 x + a_2 x^2) = (a_0 - a_1, 2a_1 + a_2)$.

Please give the formula for $T \circ S : \mathbf{M}_{22} \to \mathbf{R}^2$. (20%)

(3) Show that **A** is diagonalizable by finding a matrix **S** such that $S^{-1}AS = D$, where **D** is a diagonal matrix, and $A = \begin{bmatrix} 5 & -6 \\ 3 & -4 \end{bmatrix}$. (20%)

- (4) Let X and Y be independent random variables each geometrically distributed with parameter p. Find $P(\min(X,Y) = X) = P(Y \ge X)$. (20%)
- (5) Suppose n balls are distributed into n boxes so that all of the n^n possible arrangements are equally likely. Compute the probability that only box 1 is empty. (20%)