編號: 342

國立成功大學九十八學年度碩士班招生考試試題

共 / 頁,第/頁

系所組別: 電信管理研究所乙、丙組

考試科目: 線性代數

考試日期:0308, 節次:2

※ 考生請注意:本試題 □可 ☑不可 使用計算機

(1) (20%) Let P_n denote the vector space of polynomials of degree $\leq n$. Let $T: P_2 \to P_3$ be a linear transformation defined by T(p(x)) = xp(x).

 $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ and $B' = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ are the bases of P_2 and P_3 , respectively; where $\mathbf{u}_1 = 1$, $\mathbf{u}_2 = x$, $\mathbf{u}_3 = x^2$; $\mathbf{v}_1 = 1$, $\mathbf{v}_2 = 1 - x$, $\mathbf{v}_3 = x + x^2$, $\mathbf{v}_4 = x - x^3$

- (a) Find the matrix for T such that $[T]_{B',B}[\mathbf{x}]_B = [T(\mathbf{x})]_{B'}$
- (b) Verify the matrix obtained in part (a) for every vector $\mathbf{x} = c_0 + c_1 x + c_2 x^2$ in P_2 .
- (2) (20%) Show that the functions $f_1 = 1$, $f_2 = e^x$, and $f_3 = e^{2x}$ form a linearly independent set of vectors in $C^2(-\infty,\infty)$ by using *Wronskian*. $C^n(-\infty,\infty)$ denotes the subspace of n times differentiable continuous function on the interval $(-\infty,\infty)$.
- (3) (20%) Let $W = span\{(1,2,3),(4,5,6)\}$ be a subspace in \mathbb{R}^3 .
 - (a) Find a basis for W^{\perp} , where W^{\perp} is the subspace orthogonal to W.
 - (b) Show that the vectors (1,2,3), (4,5,6) and the basis of W^{\perp} from part (a) form a basis for \mathbb{R}^3 .
- (4) (20%) Let X and Y be continuous random variables having joint density function given by

$$f(x,y) = \begin{cases} n(n-1)(y-x)^{n-2}, & 0 \le x \le y \le 1, \\ 0, & \text{elsewhere} \end{cases}$$

Please compute the conditional expectation of Y given X = x and the expectation of Y.

(5) (20%) Let $X_1, ..., X_n$ be independent and identical distributed random variables having variance σ^2 . Please compute $Cov(X_i - \overline{X}, \overline{X})$.