國立成功大學 83 學年度 國際企業試(從 後分 試題)紫

- I. Use the Mean Value Theorem to show that: $\frac{h}{1+h} < \ln(1+h) < h$ if either $h \in (-1,0)$ or h > 0. (10%)
- 2 (a) Suppose that f, g are integrable in [a,b]. Then prove the integral form of the Schwarz inequality $\left(\int_a^b fg\right)^2 \le \left(\int_a^b f^2\right) \left(\int_a^b g^2\right)$, with equality if and only if f(x) = kg(x) in [a,b] for some constant k.
- (b) For f,g in (a), Prove the integral form of the Minkowski inequality: $\sqrt{\int_a^b (f+g)^2} \le \sqrt{\int_a^b f^2} + \sqrt{\int_a^b g^2} \qquad (15\%)$

3. Find the following limits:
(1)
$$\lim_{n\to\infty} \left[\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \dots + \frac{n}{n^2+n^2} \right]$$

(2) $\lim_{k\to\infty} \sum_{n=1}^k \frac{1}{n(n+1)(n+2)}$ (10%)

4. Let $f_n(x) = (\sin nx)/n$, and for each fixed real x, let $f(x) = \lim_{n \to \infty} f_n(x)$.

Show that
$$\lim_{n\to\infty} f'_n(0) \neq f'(0)$$
. (10%)

- 5. (a) If 0 < x < 1, prove that $(1 + x^n)^{1/n}$ approaches to a limit as $n \to \infty$ and compute this limit.
 - (b) Given a>0, b>0, compute $\lim_{n\to\infty} (a^n + b^n)^{1/n}$. (15%)
- 6. Let $g(x) = xe^{x^2}$ and let $f(x) = \int_1^x g(t)(t + \frac{1}{t})dt$. Compute the limit of f''(x)/g''(x) as $x \to +\infty$. (10%)
- 7.(a) Show that $\int_{o}^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_{o}^{\pi} f(\sin x) dx$,
(b) Use (a) to deduce $\int_{o}^{\pi} \frac{x \sin x}{1 + \cos^{2}x} dx = \pi \int_{o}^{1} \frac{1}{1 + x^{2}} dx$. (15%)
- 8. A truck is to be driven 300 miles on a freeway at constant speed of miles per hour. Speed laws require $30 \le x \le 60$. Assume that fuel costs 30 cents per gallon and is consumed at the rate of $2 + x^2/600$ gallons per hour. If the driver's wages are D dollars per hour and if he obeys all speed laws, find the most economical speed and the cost of trip if (a) D=1 (b) D=2.