一、選擇題(一題5分,共計50分)

1. If
$$f(x) = \begin{cases} c & \text{if } x = -3\\ \frac{9 - x^2}{4 - (x^2 + 7)^{1/2}} & \text{if } |x| < 3 \text{ , then } f \text{ is continuous on } [-3, 3] \text{ provided} \\ d & \text{if } x = 3 \end{cases}$$

a)
$$c = 8$$
 and $d = -8$ b) $c = d = 8$ c) $c = -8$, $d = 8$ d) $c = d = 6$ e) $c \neq d$

a)
$$c = 8$$
 and $d = -8$ b) $c = d = 8$ c) $c = -8$, $d = 8$ d) $c = d = 6$ e) $c = -8$.

2. If $f(x) = \begin{cases} |x| & \text{if } |x| \le 1 \\ 2 - |x| & \text{if } x > 1 \end{cases}$, then which of the following is true?

- a) f is not continuous at x = 1 but it is differentiable at x = 1
- b) f is differentiable at all x
- c) f is continuous but not differentiable at x = 0
- d) f is continuous and differentiable at x = 1
- e) none of these
- 3. A rectangle has its vertices on the x-axis, the y-axis, the origin, and the graph of $y = 4 - x^2$. Find the maximum possible area for such a rectangle.

a)
$$\frac{8\sqrt{3}}{9}$$
 b) $\frac{16\sqrt{3}}{9}$ c) $\frac{32\sqrt{3}}{9}$ d) $2\sqrt{3}$ e) none of these

4.
$$\int_{1}^{\pi} \sin x (1 + \sqrt{\cos x})^2 dx$$
 equals

a)
$$\frac{17}{6}$$
 b) 3 c) $\frac{19}{6}$ d) $-\frac{19}{6}$ e) none of these

5. The area bounded by the curves
$$y + x^3 = 0$$
, $y = \sqrt{x}$, and $3y + 7x = 10$ equals

a)
$$\frac{53}{3}$$
 b) $\frac{53}{4}$ c) $\frac{53}{6}$ d) $\frac{51}{5}$ e) none of these

6. The volume of the solid generated by revolving the region bounded by the curve
$$y=x^3$$
, $x=-2$, and $y=0$ about the x-axis equals

a)
$$\frac{128\pi}{5}$$
 b) 18π c) $\frac{120\pi}{2}$ d) $\frac{128\pi}{7}$ e) none of these

7. The series
$$\sum_{n=1}^{\infty} \frac{1}{\ln(n)}$$

a) converges by comparison to
$$a_n = \frac{1}{n}$$
 b) diverges by comparison to $a_n = \frac{1}{n}$

c) converges by the integral test ___ d) converges by comparison to
$$a_n = \frac{1}{n^2}$$

e) none of these

91)學年度國立成功大學即際企業研究所系微類分

試題 共 2 頁 第 2 頁

8. The interval of convergence of
$$s = \frac{x}{2^2 \cdot 3} + \frac{x^2}{3^2 \cdot 3^2} + \frac{x^3}{4^2 \cdot 3^3} + \cdots$$
 is
a) $(-3,3)$ b) $[-3,3)$ c) $(-3,3]$ d) $[-3,3]$ e) none of these

9. What dose
$$\iint_{R} (x^3 - y^3) dA$$
 equal where R is bounded by $y = x^3$, $x = 0$ and
$$y = 0$$
?

a) $-\frac{45}{364}$ b) $\frac{45}{364}$ c) $\frac{9}{46}$ d) $\frac{1}{5}$ e) none of these

10. The volume of the solid in the first octant bounded by
$$x + y = 4$$
 and $z = xy$ is a) $\frac{44}{3}$ b)15 c) $\frac{42}{3}$ d) $\frac{43}{3}$ e) none of these

- 二、計算或證明題 (一題 10 分,共計 50 分), 需寫出詳細計算或證明過程,否則扣分或不計分。
- 1. Using the Definition of a Limit, Show that $\lim_{x\to c} \frac{1}{x} = \frac{1}{c}, c \neq 0$.
- 2. Show that $f(x) = \sqrt{2x+1} + 2x$ is continuous at 3.
- 3. Show that f satisfies the hypotheses of Rolle's theorem on the interval [2,6], and find all numbers c in (2,6) that satisfy the conclusion of Rolle's theorem for $f(x) = 2x^2 16x + 11$.
- 4. A solid has as its base the region in the xy-plane bounded by the graphs of $y^2 = 4x$ and x = 4. If every cross section by a plane perpendicular to the y-axis is a semicircle, find the volume of the solid.
- 5. Express $\iint_{R} (3x+2y)dA$ over the triangular region with vertices (-2, -2), (-1, -2), (-1, -1) as an iterated integral and find its value.