國立成功大學 112學年度碩士班招生考試試題

編 號: 257

系 所:數據科學研究所

科 目:計算機概論

日 期: 0206

節 次:第2節

備 註:不可使用計算機

編號: 257

國立成功大學 112 學年度碩士班招生考試試題

系 所:數據科學研究所

考試科目:計算機概論 考試日期:0206,節次:2

第1頁,共3頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. (45%) In the following statements, please specify if the statement is **True** or **False**. If the statement is True, explain why it is True. If it is **False**, give correct answer or explain why.
 - (a) Pruning a decision tree will remove some branches. Pruning a decision tree will decrease model bias.
 - (b) Pruning a decision tree will decrease model variance.
 - (c) For a graph G and a node v in that graph, the DFS and BFS trees of G rooted at v always contain the same number of edges.
 - (d) Prim's algorithm is a greedy algorithm but Kruskal's algorithm is not.
 - (e) We cannot determine if an undirected graph G = (V, E) has a cycle in O(|V| + |E|) time.
 - (f) Since classification is a special case of regression, logistic regression is a special case of linear regression.
 - (g) The training error of k-Nearest Neighbor classifier with k = 1 cannot be 0.
 - (h) The back-propagation algorithm learns a globally optimal neural network with hidden layers.
 - (i) A classifier trained on less training data is less likely to overfit.
 - (j) Dijkstra's algorithm can be used to find the shortest path between two nodes in a graph with negative edge weights.
 - (k) A hash function maps each key to an array index (i.e., a hash table position). A good hash function uniformly distributes the keys among the available indices.
 - (l) The core data structure of Depth-First Search is a queue.
 - (m) Adding an element to a heap has worst-case time complexity $O(\log(n))$.
 - (n) When optimizing a regression problem where we know that only some of our features are useful, we should use L1 regularization.
 - (o) Any problem that can be solved with a greedy algorithm can also be solved with recursive algorithm.
- 2. (6%) Design and write an algorithm for calculating the number of paths of length k between two given vertices i and j. The graph is unweighted and you know its adjacency matrix A. Also state the runtime of your algorithm in Big-O notation and explain why your algorithm has the specified runtime.
- 3. (5%) Given the following four functions, please sort their time complexity in a descending order.

$$F_1(x) = \log x^2$$
 $F_2(x) = (\log x)!$ $F_3(x) = (x+1)!$ $F_4(x) = \log(x!)$

編號: 257

國立成功大學 112 學年度碩士班招生考試試題

系 所:數據科學研究所

考試科目:計算機概論

考試日期:0206,節次:2

第2頁,共3頁

4. (6%) Give the preorder, inorder, and postorder traversal of the following tree.

5. (5%) Please read the following Python code, and answer what will be printed out.

```
num1, num2 = "111", "99"
ans = 0
m, n = len(num1), len(num2)
i = 0
while i < m:
    a = int(num1[m - 1 - i])
    j = 0
    while j < n:
        b = int(num2[n - 1 - j])
        ans += a * b * (10 ** (i + j))
        j += 1
    i += 1
print(ans)</pre>
```

- 6. (9%) Answer the following questions on operating systems.
- (a) What is "context switching"? How "context switch" be processed by the operating systems?
- (b) How do I/O-bound and CPU-bound programs differ?
- (c) Explain the difference between internal fragmentation and external fragmentation.

編號: 257

國立成功大學 112 學年度碩士班招生考試試題

所:數據科學研究所

考試科目:計算機概論 考試日期:0206,節次:2

第3頁,共3頁

7. (16%) Answer the following questions on data science.

- (a) Give two supervised learning methods (e.g., decision tree, logistic regression) and explain a strategy to avoid overfitting for each of them.
- (b) What is regularization? Please also give an example to explain why regularization can avoid overfitting.
- (c) What are the main advantages of deep learning over traditional machine learning?
- (d) What is bagging? What is boosting? Explain the differences between bagging and boosting.
- 8. (8%) Assume you have the following three datasets. Each dataset contains two features (x1 and x2), and a class label (cross and star). Dataset 3 contains one data point (triangle) that belongs to both cross and star classes, and is the only one overlapping point of different classes in these three datasets.
- (a) By using Logistic Regression without regularization, which datasets among these three can produce 100% training accuracy? Explain your solution.
- (b) By using Decision Tree (e.g., ID3), which datasets among these three can produce 100% training accuracy? Explain your solution.

