系所組別：土木工程學系甲，丁組
考試科目：結構學
※ 考生請注意：本試題可使用計算機
（1）Draw the influence line for the internal force in member $F G$ of the bridge truss when a unit load is moving on the floors 0－6．

Fig． 1
（2）Consider a loaded statically determinate beam as shown in Fig． 2 （ $E l=$ constant）．The support a is a guide support，which means the rotation of point a is zero，and point a can freely move in the vertical direction（i．e．， $\theta_{a}=0$ and $\Delta_{a} \neq 0$ ）．The joint b is a center hinge placed on a roller support．
Determine the relative rotation at point b ，which is $\Delta \theta_{b}$ ，and $\Delta \theta_{b}=\theta_{b}-\theta_{b}$ ，in which $\theta_{i n}$ and θ_{b} denote the rotations at points b^{+}and b^{-}，respectively，
（a）using the conjugate－beam method，
（b）using the unit－load method（i．e．，the virtual work method）．

Fig． 2
（績下頁）

系所組別：土木工程學系甲，丁組
考試科目：结構學
※ 考生請注意：本試題可使用計算機
（3）Consider a plane frame as shown in Fig． 3 （ $E I=$ constant），in which the joint C is a roller support and connected with an axial spring，of which the spring stiffness is $k_{s}\left(k_{s}=\frac{6 E I}{L^{3}}\right)$ ，and a moment of magnitude M_{0} is applied at B ．Determine the displacement of point $C\left(\Delta_{C}\right)$ ，
（a）using the slope－deflection method，
（b）using the moment－distribution method．

Fig． 3
（4）Consider a truss structure as shown in Fig 4a，in which the length and axial rigidity of each member is L and $A E$ ，respectively，k_{s} denotes the spring coefficient $\left(k_{s}=A E / L\right)$ ，and the numberings of the joints and members are shown in Fig 4b．Determine the horizontal and verticle displacements at point C（i．e．，$\left(\Delta_{c}\right)_{h}$ and $\left.\left(\Delta_{c}\right)_{v}\right)$ using the matrix displacement method．It is noted that a standard solution procedure of this method is required．

Fig． 4 a

Fig．4b

