系所組別：土木工程學系甲，乙，丁組

考試科目：工程數學

※ 考生請注意：本試題 \square 可 \square 尔可 使用計算機

1．（10\％）The steady－state temperature in a region bounded by two long coaxial cylinders is

$$
\frac{d}{d r}\left(r \frac{d U}{d r}\right)=0
$$

where U is the temperature at distance r from the common axis．Suppose that the temperature U is kept at constant temperature T_{1} and T_{2} ，respectively，on $r=a$ and $r=b$ ，where $a<b$ ．Derive the temperature field $U(r)$ ．

2．(10%) Solve

$$
y^{\prime}=\frac{x y^{2}-1}{1-x^{2} y}, \text { with } y(0)=1
$$

3．（10\％）Evaluate the surface integral

$$
\iint_{S} F \cdot n d S
$$

using the divergence theorem，where $\boldsymbol{F}(x, y, z)=\sin y i+e^{x} j+z^{2} k$ and S consists of the surfaces described by $z=\sqrt{a^{2}-x^{2}-y^{2}}$ and $z=0$ ．

4．（ 10% ）Evaluate the line integral

$$
\int_{C} F \cdot d x
$$

where $F(x, y, x)=\left(x+y^{2}\right) i+(x+z) j+x y k$ and C is the path from the origin to the point（ $1,-1,1$ ）along the curve

$$
C: x=t i-t^{2} j+t^{3} k, \quad(0 \leq t \leq 1) .
$$

系所組別：土木工程學系甲，乙，丁組

※ 考生請注意：本試趩 \square 可 \square 不可 使用計算機

5．（ 10% ）Given

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
3 & 1 & 1 \\
2 & 3 & 1
\end{array}\right]
$$

If we have $\boldsymbol{A}^{-1}=\alpha_{0} I+\alpha_{1} A+\alpha_{2} \boldsymbol{A}^{2}$ ，find the coefficients $\alpha_{0}, \alpha_{1}, \alpha_{2}$ ．

6．（ $\mathbf{1 0 \%}$ ）The following set of equations possesses a one－parameter family of solutions：

$$
\begin{aligned}
2 x_{1}-x_{2}-x_{3} & =2 \\
x_{1}+2 x_{2}+x_{3} & =2 \\
4 x_{1}-7 x_{2}-5 x_{3} & =2
\end{aligned}
$$

Find the general solution．

7．（10\％）Evaluate

$$
\oint_{C} \frac{3 z^{3}+2}{(z-1)\left(z^{2}+9\right)} d z
$$

C is taken counterclockwise around the circle：$|z-2|=2$ ．
8．(10%) Use residues theorem to calculate the integral

$$
\int_{-\pi}^{\pi} \frac{d \theta}{1+\sin ^{2} \theta}
$$

9．（20\％）Apply separation of variables to solve the partial differential equation

$$
\begin{aligned}
\nabla^{2} u(x, y) & =0, \text { for } 0<x<a, 0<y<b, \\
u(x, 0) & =0 \text { for } 0 \leq x \leq a, \\
u(0, y) & =u(a, y)=0 \text { for } 0 \leq y \leq b, \\
u(x, b) & =f(x) \text { for } 0 \leq x \leq a .
\end{aligned}
$$

