1．A three－bar truss is assembled at room temperature as shown．All the members have the same modulus of elasticity E ，cross section area A ，moment of inertia I and thermal expansion coefficient α ．After the assembling，the temperature of member BD is increased by $\Delta \mathrm{T}$ ．However，the temperature of members AD and CD are not changed．Find the maximum value of $\Delta \mathrm{T}$ in order to avoid the buckling of member BD．（20\％）

2．A nonprismatic member $A C B$ is fixed at both ends as shown．There is a concentrated force P applied at point C．Assume the member is made of an elastic－perfectly plastic material with the yield stress $\sigma_{y}=200 \mathrm{MPa}$ ．If $\mathrm{a}=15 \mathrm{~cm}$ for member $\mathrm{AC}, \mathrm{b}=20 \mathrm{~cm}$ for member CB and $\mathrm{L}=2 \mathrm{~m}$ ，calculate the ultimate load P_{u} that can be applied to the member．（15\％）

3．A block of material A with modulus of elasticity E，Poisson＇s ratio v and thermal expansion coefficient α is confined between rigid walls B in x direction and is not confined in the y and z directions．If the temperature of the material is increased by ΔT ．Disregard friction between the material and the walls． Calculate（i）the lateral pressure σ_{X} between the material and the rigid walls，（ii）the unit volume change e of the material，（iii）the strain energy density u of the material．（ 25% ）

4．A block is subjected to two axial loads．Determine the normal stress at points A and B．（20\％）

5．Please explain how to determine the distances e_{1} and e_{2} for the shear center S of a thin－walled beam having the cross section shown below．（20\％）

